Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-25T13:47:14.248Z Has data issue: false hasContentIssue false

Viscoelastic Properties of Healthy Human Artery Measured in Saline Solution by AFM-Based Indentation Technique

Published online by Cambridge University Press:  15 February 2011

A. Lundkvist
Affiliation:
University of California, Berkeley CA 94720
E. Lilleodden
Affiliation:
Lawrence Livermore National Laboratory, Livermore CA 94550, baloochl @llnl.gov
W. Siekhaus
Affiliation:
Lawrence Livermore National Laboratory, Livermore CA 94550, baloochl @llnl.gov
J. Kinney
Affiliation:
Lawrence Livermore National Laboratory, Livermore CA 94550, baloochl @llnl.gov
L. Pruitt
Affiliation:
University of California, Berkeley CA 94720
M. Balooch
Affiliation:
Lawrence Livermore National Laboratory, Livermore CA 94550, baloochl @llnl.gov
Get access

Abstract

Using an Atomic Force Microscope with an attachment for indentation, we have measured local, in vitro mechanical properties of healthy femoral artery tissue held in saline solution. The elastic modulus (34.3 kPa) and viscoelastic response (τɛ = 16.9 s and τσ = 29.3 s) of the unstretched, intimal vessel wall have been determined using Sneddon theory and a three element model (standard linear solid) for viscoelastic materials. The procedures necessary to employ the indenting attachment to detect elastic moduli in the kPa range in liquid are described.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Heart and Stroke Facts: 1994 Statistical Supplement, American Heart Association.Google Scholar
2. Virmani, R., Farb, A. and Burke, A.P., American Heart Journal 127: 163179 (1994).Google Scholar
3. Waller, B.F., Orr, C.M., Pinkerton, C.A., Van Tassel, J., Peters, T. and Slack, J.D., Journal of the American College of Cardiology 20 (3): 701706 (1992).Google Scholar
4. Fitzpatrick, L.A., Severson, A., Edwards, W.D. and Ingram, R.T., Journal of Clinical Investigation 94: 15971604 (1994).Google Scholar
5. Timoshenko, S. P. and Goodier, J. N.. Theory of Elasticity, 3rd edition. (McGraw Hill Book Company, New York, 1970).Google Scholar
6. Fung, Y.C., Biomechanics, 2nd ed. (Springer-Verlag New York, Inc., New York, 1993), pp.4146.Google Scholar
7. Sneddon, I.N., International Journal of Engineering Science 3: 47 (1965).Google Scholar
8. Pharr, G. M, Oliver, W.C. and Brotzen, F.R., Journal of Materials Research 7 (3): 613617 (1992).Google Scholar
9. Gow, B.S. and Vaishnav, R.N., Journal of Applied Physiology 38 (2): 344–50 (1975).Google Scholar
10. Gow, B.S., Castle, W.D. and Legg, M.I., Journal of Biomechanics 16 (6): 451458 (1983).Google Scholar
11. Lee, R.T., Richardson, G., Loree, H.M., Grodzinsky, A.J., Gharib, S.A., Schoen, F.J. and Pandian, N., Arteriosclerosis and Thrombosis 12 (1): 15 (1992).Google Scholar