Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T23:26:47.250Z Has data issue: false hasContentIssue false

Vibrational distortions of the Au7+ hexagonal cluster

Published online by Cambridge University Press:  11 July 2013

J. R. Soto
Affiliation:
Facultad de Ciencias, Universidad Nacional Autónoma de México, Apdo. Postal 70- 646, 04510 México, D.F.
B. Molina
Affiliation:
Facultad de Ciencias, Universidad Nacional Autónoma de México, Apdo. Postal 70- 646, 04510 México, D.F.
J. J. Castro
Affiliation:
Departamento de Física, CINVESTAV del IPN, Apdo. Postal 14-740, 07000 México D.F. México
Get access

Abstract

The study of the 2D-3D structural transition in Au7+ nanocluster as a function of the number of gold atoms has been a long standing problem due to contradictory results between experiments, that show a 2D structure, and some theoretical results predicting 3D. We present a theoretical analysis, based on the pseudo Jahn-Teller effect that explains the origin of the 2D-3D structural transition controversy. It is shown that the usually assumed 2D non-degenerate ground state cluster structure with D6h symmetry is unstable due to a vibronic coupling between the ground state and one excited state, producing a puckering effect ending in a 3D stable structure with D3d symmetry. This structure presents the same surface area than the 2D, being therefore compatible with ion mobility experimental results. We discuss the effect of symmetry breaking on the Raman, IR and UV-vis spectra, which might indicate some possible sensor capabilities for this subnanometric cluster. The study is based on scalar relativistic and time-dependent DFT calculations in the Zero Order Regular Approximation (ZORA).

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bulusu, S., Li, X., Wang, L.S., Zeng, X.C., PNAS 103, 8326 (2006).CrossRefGoogle Scholar
Xing, X., Yoon, B., Landman, U., Parks, J.H., Phys. Rev. B 74, 165423 (2006).CrossRefGoogle Scholar
Weis, P., Int. J. Mass Espectrom 245, 1, (2005).CrossRefGoogle Scholar
Soule de Bas, B., Ford, M.J., Cortie, M.B., J. Mol. Struct. (THEOCHEM) 686, 193 (2004).CrossRefGoogle Scholar
Johansson, M.P., Lechtken, A., Schooss, D., Kappes, M.M., Furche, F., Phys.Rev. A 77, 053202 (2008).CrossRefGoogle Scholar
Häkkinen, H., Landman, U., Phys. Rev. B 62, R2287 (2000).CrossRefGoogle Scholar
Fa, W., Dong, J., Appl. Phys. Lett. 89, 013117 (2006).CrossRefGoogle Scholar
Ferrighi, L., Hammer, B., Madsen, G.H., J. Am. Chem. Soc. 131, 10605 (2009).CrossRefGoogle Scholar
Shi, Y-K., Li, Z.H., Fan, K-N., J. Phys. Chem. A 114, 10297 (2010).CrossRefGoogle Scholar
Walker, A.V., J. Chem. Phys. 122, 094310 (2005).CrossRefGoogle Scholar
Gilb, S., Weis, P., Furche, F., Ahlrichs, R., Kappes, M.M., J. Chem. Phys. 116, 4094 (2002).CrossRefGoogle Scholar
Remacle, F., Kryachko, E.S., J. Chem. Phys. 122, 044304 (2005).CrossRefGoogle Scholar
Ogurtsov, I.Y., Munteany, G., Bersuker, I.B., Bantush, L., J. Mol. Struct. (THEOCHEM) 541, 141 (2001)CrossRefGoogle Scholar
Yang, L., Bersuker, I.B., Pablo, G.F., Boggs, J.E., J. Phys. Chem. A 116, 7564 (2012).Google Scholar
Bersuker, I. B., The Jahn-Teller Effect (Cambridge University Press, 2006) pp 110122.CrossRefGoogle Scholar
ADF 2009, SCM. Theoretical Chemistry, Vrije Universiteit, Amsterdam, Netherlands (www.scm.com).Google Scholar
van Lenthe, E, Baerends, E. J., Snijders, J. G., J. Chem. Phys. 99, 4597 (1993).CrossRefGoogle Scholar
van Lenthe, E, van der Avoird, A., Wormer, P. E. S, J. Chem. Phys. 108, 4783 (1998).CrossRefGoogle Scholar
Lecoultre, S., Rydio, A., Felix, C., Buttet, J., Gilb, S., Harbich, W. J. Chem. Phys. 134, 074302 (2011).CrossRefGoogle Scholar