Skip to main content Accessibility help

The Viability of Nanotechnology-based InGaN Solar Photovoltaic Devices for Sustainable Energy Generation

  • Joshua M. Pearce (a1) (a2), Chenlong Zhang (a1), Joseph Rozario (a2) and Jephias Gwamuri (a1)


The unrestrained combustion of fossil fuels has resulted in vast pollution at the local scale throughout the world, while contributing to global warming at a rate that seriously threatens the stability of many of the world's ecosystems. Solar photovoltaic (PV) technology is a clean, sustainable and renewable energy conversion technology that can help meet the energy demands of the world’s growing population. Although PV technology is mature with commercial modules obtaining over 20% conversion efficiency there remains considerable opportunities to improve performance. The nearly global access to the solar resource coupled to nanotechnology innovation-driven decreases in the costs of PV, provides a path for a renewable energy source to significantly reduce the adverse anthropogenic impacts of energy use by replacing fossil fuels. This study explores several approaches to improving indium gallium nitride-based PV efficiency with nanotechnology: optical enhancement, microstructural optimization for electronic material quality and increasing the spectral response via bandgap engineering. The results showing multibandgap engineering with InGaN and impediments to widespread deployment and commercialization are discussed including technical viability, intellectual property laws and licensing, material resource scarcities, and economics. Future work is outlined and conclusions are drawn to overcome these limitations and improve PV device performance using methods that can scale to the necessary terawatt level.



Hide All
1. International Energy Agency. World Energy Outlook; (IEA: Paris, France, 2010).
2. Hoffert, M.I., Caldeira, K., Benford, G., Criswell, D.R., Green, C., Herzog, H., Jain, A.K., Kheshgi, H.S., Lackner, K.S., and Lewis, J.S., Science 298(5595), 981987 (2002).
3. Stern, N., The Economics of Climate Change: The Stern Review (Cambridge University Press, Cambridge, UK, 2007) .
4. Pearce, J.M., Futures 34(7), 663674 (2002).
5. Smalley, R., Mat. Res. Soc. Bull. 30(6), 412417 (2005).
6. Branker, K., Pathak, M.J.M., Pearce, J.M., Renew. Sust. Energ. Rev. 15, 44704482 (2011).
8. Green, M.A., Third Generation Photovoltaics: Advanced Solar Energy Conversion, 2nd ed. (Springer-Verlag, Berlin, 2005) pp. 5969.
9. Woodcock, J.M., Schade, H., Maurus, H., Dimmler, B., Springer, J., and Ricaud, A. in A Study of the Upscalling of Thin film Solar Cell Manufacture towards 500 MWp per Annum, (Proc. 14th European PV. Solar Energ. Conf. Barcelona, 1997) pp. 857860.
10. McLaughlin, D.V.P. and Pearce, J. M., Metall. Mater. Trans. A 44(4), 19471954 (2013).
11. Jani, O., Ferguson, I., Honsberg, C., Kurtz, S., App. Phys. Lett. 91(13), 132117 (2007).
12. Gwamuri, J., Guney, D., Pearce, J.M. in Solar Cell Nanotechnology, edited by Tiwari, A., Boukherroub, R., Sharon, M. (WILEY Scrivener Publishers, USA) 2013.
13. Keating, S., Urquhart, M.G., McLaughlin, D.V.P., Pearce, J.M., Cryst. Growth Des. 11(2), 565568 (2011).
14. Cao, L., White, J.S., Park, J.S., Schuller, J.A., Clemens, B.M., and Brongersma, M.L., Nat. Mater., 8, 643647 (2009).
15. Pearce, J. M., Nature 491, 519521 (2012).
16. Mushtaq, U. and Pearce, J.M. in Nanotechnology and Global Sustainability, edited by Maclurcan, D., Radywyl, N. (CRC Press, Boca Raton, 2012) pp. 191213.
17. Pearce, J.M., Nano Today (2013, in prees) DOI: 10.1016/j.nantod.2013.04.001
18. Heller, M.A. and Eisenberg, R.S., Science 280(5364), 698701 (1998).
19. Schummer, J. in Nanoethics: Nanoethics edited by Allhoff, F., Lin, P., Moor, J. and Weckert, J., (Wiley, Hoboken, 2007) pp. 291307.
20. Heller, M. A. and Eisenberg, R. S., Science 280(5364), 698701 (1998).
21. Burgi, B. R. and Pradeep, T., Current Science 90 (5) 645658 (2006).
22. Lemley, M. A., Stanford Law Review 58(2), 601630 (2005).
23. Vaidhyanathan, S. in Nanotechnology: Risk, Ethics and Law, edited by Mehta, M. and Hunt, G. (Earthscan, London, 2006) pp. 225236.
24. Mowery, D.C., Nelson, R.R., Sampat, B.N., Ziedonis, A.A., Res. Policy 30, 99119 (2001).
25. Garfinkel, S. L., Stallman, R. M., and Kapor, M. in High Noon on the Electronic Front: Conceptual Issues in Cyberspace, edited by Ludlow, P., (MIT, Cambridge, 1999) pp. 3546.
26. Chesbrough, H., Open Business Models: How to Thrive in the New Innovation Landscape (Harvard Business School Press, Boston, MA, 2006) .
27. Boldrin, M., Levine, D. K., Against Intellectual Monopoly (Cambridge U., Cambridge, 2008).
28. Buitenhuis, A. J., Pearce, J. M., Energy for Sust. Dev. 16, 379388 (2012).
29. What Will Apple Do When Indium Runs Out in 2017? - Forbes [WWW Document], n.d. Forbes. URL (accessed 3.16.13).
30. Touch-and-go tablet and computer screens [WWW Document], n.d. BBC Future. URL (accessed 3.16.13).
31. Wallentin, J., Anttu, N., Asoli, D., Huffman, M., Åberg, I., Magnusson, M. H., Siefer, G., et al. . Science 339(6123), 10571060 (2013).
32. Taylor, S.R. and McLennan, S.M., The continental crust: Its composition and evolution. (Blackwell Scientific Pub., Palo Alto, CA, 1985).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed