Skip to main content Accessibility help

Very Low-Temperature, Gram-Scale Synthesis of Monodisperse BaTiO3 Nanocrystals via an Interfacial Hydrolysis Reaction

  • Daniel E. Morse (a1) and Richard L. Brutchey (a2)


A vapor diffusion sol-gel method is reviewed for the preparation of high-quality BaTiO3 nanocrystals on the gram scale at very low temperatures. The synthesis is based on the kinetically controlled introduction of water into a solution of the bimetallic alkoxide, BaTi(O2C4H9)6, where slow hydrolysis then occurs at the vapor-solution interface followed by nucleation and nanocrystal growth at 16 °C. The resulting 6-nm, quasi-spherical nanocrystals are both monodisperse (without stabilizing agents or size selecting purification) and highly crystalline (without any post-synthesis heat treatment), and are isolated in yields near 100%. Based on new permittivity and calorimetry data, the crystal structure of the nanocrystals is most likely in the paraelectric cubic phase (space group Pm3m) at room temperature, which corroborates previous diffraction data. It was also demonstrated that the BaTiO3 nanocrystals can be doped with trivalent lanthanum cations using the same low-temperature vapor diffusion sol-gel method to yield donor-doped Ba1−x La x TiO3, which exhibits a considerable PTCR effect.



Hide All
1.a) Lines, M.E. and Glass, A.M., Principles and Applications of Ferroelectrics and Related Materials (Clarendon Press, Oxford, 1977); b) R.E. Newnham and L.E. Cross, MRS Bull. 30, 845 (2005); c) C.D. Chandler, C. Roger, M.J. Hampden-Smith, Chem. Rev. 93, 1205 (1993).
2. Gao, Y. and Koumoto, K., Cryst. Growth & Design 5, 1893 (2005).
3. O'Brien, S., Brus, L., Murray, C.B., J. Am. Chem. Soc. 123, 12085 (2001).
4. Niederberger, M., Pinna, N., Polleux, J., Antoinetti, M., Angew. Chem. Int. Ed. 43, 2270 (2004).
5. Wang, X., Zhuang, J., Peng, Q., Li, Y.D., Nature 437, 121 (2005).
6. Kolen'ko, Y.V., Kovnir, K.A., Neira, I.S., Taniguchi, T., Ishigaki, T., Wanatabe, T., Sakamoto, N., Yoshimura, M., J. Phys. Chem. C 111, 7306 (2007).
7. Brutchey, R.L., Yoo, E.S., Morse, D.E., J. Am. Chem. Soc. 128, 10288 (2006).
8. Nuraje, N., Su, K., Haboosheh, A., Samson, J., Manning, E.P., Yang, N.-l., Matsui, H., Adv. Mater. 18, 807 (2006).
9. Bansal, V., Poddar, P., Ahmad, A., Sastry, M., J. Am. Chem. Soc. 128, 11958 (2006).
10. Ahmad, G., Dickerson, M.B., Cai, Y., Jones, S.E., Ernst, E.M., Vernon, J.P., Haluska, M.S., Fang, Y., Wang, J., Subramanyam, G., Naik, R.R., Sandhage, K.H., J. Am. Chem. Soc. 130, 4 (2008).
11.a) Schwenzer, B., Roth, K.M., Gomm, J.R., Murr, M., Morse, D.E., J. Mater. Chem. 16, 401 (2006); b) D. Kisailus, B. Schwenzer, J. Gomm, J.C. Weaver, D.E. Morse, J. Am. Chem. Soc. 128, 10276 (2006); c) J.R. Gomm, B. Schwenzer, D.E. Morse, Solid State Sci. 9, 429 (2007).
12. Brutchey, R.L. and Morse, D.E., Angew. Chem. Int. Ed. 45, 6564 (2006).
13.a) Mao, Y., Banerjee, S., Wong, S.S., Chem. Commun. 408 (2003); b) C. Liu, B. Zou, A.J. Rondinone, Z.J. Zhang, J. Am. Chem. Soc. 123, 4344 (2001).
14. Caulton, K.G. and Hubert-Pfalzgraf, L.G., Chem. Rev. 90, 969 (1990).
15. Hubert-Pfalzgraf, L.G., Daniele, S., Decams, J.M., J. Sol-Gel Sci. Tech. 8, 49 (1997).
16. Spaldin, N.A., Science 304, 1606 (2004).
17. Spanier, J.E., Kolpak, A.M., Urban, J.J., Grinberg, I., Ouyang, L., Yun, W.S., Rappe, A.M., Park, H., Nano Lett. 6, 735 (2006).
18. Zhang, Q., Cagin, T., Goddard, W.A., Proc. Natl. Acad. Sci. U.S.A. 103, 14695 (2006).
19. Peng, C.-J., Lu, H.-Y., J. Am. Ceram. Soc. 71, 44 (1988).
20. Brutchey, R.L., Cheng, G., Gu, Q., Morse, D.E., Adv. Mater. 20, 1029 (2008).


Very Low-Temperature, Gram-Scale Synthesis of Monodisperse BaTiO3 Nanocrystals via an Interfacial Hydrolysis Reaction

  • Daniel E. Morse (a1) and Richard L. Brutchey (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed