Hostname: page-component-7c8c6479df-94d59 Total loading time: 0 Render date: 2024-03-29T22:34:23.623Z Has data issue: false hasContentIssue false

Variable Frequency Conductivity of Layered Polypyrrole / V2O5 Composites

Published online by Cambridge University Press:  15 February 2011

D. C. DeGroot
Affiliation:
Department of Electrical Engineering and Computer Science and the Materials Research Center, Northwestern University, Evanston, IL 60208
J. L. Schindler
Affiliation:
Department of Electrical Engineering and Computer Science and the Materials Research Center, Northwestern University, Evanston, IL 60208
C. R. Kannewurf
Affiliation:
Department of Electrical Engineering and Computer Science and the Materials Research Center, Northwestern University, Evanston, IL 60208
Y.-J. Liu
Affiliation:
Department of Chemistry and the Center for Fundamental Materials Research, Michigan State University, East Lansing, MI 48824
C.-G. Wu
Affiliation:
Department of Chemistry and the Center for Fundamental Materials Research, Michigan State University, East Lansing, MI 48824
M. G. Kanatzidis
Affiliation:
Department of Chemistry and the Center for Fundamental Materials Research, Michigan State University, East Lansing, MI 48824
Get access

Abstract

The frequency dependent electrical properties of the intercalated polypyrrole/V2O5 system have been measured. This study continues the investigation into the charge transport mechanisms that have been identified in these layered polymer/inorganic composites. The polypyrrole/V2O5 material is prepared by in-situ oxidative polymerization of pyrrole in the intralamellar space of the V2O5 xerogel. This process produces a layered, two-dimensional structure in which the charge transport properties result from two parallel conduction paths: the polypyrrole chains and the V2O5 layers. Impedance spectroscopy data have been collected from free-standing film samples of the layered polypyrrole/V2O5. The experiments were conducted over the frequency range of 10 Hz to 0.5 GHz and a temperature range of 77 to 310 K. The polypyrrole/V2O5 impedance results are presented in various equivalent forms and compared to data collected from pristine V2O5·nH2O, and reduced Cs0.14V2O5·nH2O.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Proceedings of the International Conference on Science and Technology of Synthetic Metals (ISCM'90), edited by Hanack, M., Roth, S., and Schier, H., Synth. Met. 41 (1991).Google Scholar
2. Scherr, E. M., et. al., Synth. Met. 41, 735 (1991).CrossRefGoogle Scholar
3. Wu, C.-G., Kanatzidis, M. G., Marcy, H. O., DeGroot, D. C., and Kannewurf, C. R., in Lower Dimensional Systems and Molecular Devices, edited by Metzger, R. M. (Plenum Press, New York, 1991) pp. 427434.Google Scholar
4. Wu, C.-G., Kanatzidis, M. G., Marcy, H. O., DeGroot, D. C., and Kannewurf, C. R., Polym. Mat. Sci. Eng. 61, 969 (1991).Google Scholar
5. Wu, Chun-Guey, Marcy, Henry O., DeGroot, Donald C., Kannewuif, Carl R., Kanatzidis, Mercouri G., in Advanced Organic Solid State Materials (Mater. Res. Soc. Proc. 173, Pittsburgh, PA 1990) pp. 317322.Google Scholar
6. Kanatzidis, Mercouri G., Wu, Chun-Guey, Marcy, Henry O., DeGroot, Donald C., and Kannewurf, Carl R., Chem. Mater. 2, 222 (1990).Google Scholar
7. Liu, Y.-J., DeGroot, D C., Schindler, J. L., Kannewurf, C. R., and Kanatzidis, M. G., Chem. Mater. 3, 992 (1991).CrossRefGoogle Scholar
8. McDonald, J. Ross, Impedance Spectroscopy (John Wiley & Sons, New York, 1987).Google Scholar
9. Lemerle, J., Nejem, L., and Lebebvre, J., J. Inorg. Nucl. Chem. 42, 17 (1980).Google Scholar
10. Bullot, J., Gallais, O., Gauthier, M., and Livage, J., Appl. Phys. Lett. 36, 986 (1980).Google Scholar
11. Sanchez, C., Babonneau, F., Morineau, R., Livage, J., and Bullot, J., Philos. Mag. B 47, 279 (1983).Google Scholar
12. Bullot, J., Cordier, P., Gallais, O., Gauthier, M., and Livage, M., J. Non-Cryst. Solids 68, 123 (1984).Google Scholar
13. Liu, Y.-J. and Kanatzidis, M. G. (manuscript in preparation)Google Scholar
14. Lyding, Joseph W., Marcy, Henry O., Marks, Tobin J., and Kannewurf, Carl R., IEEE Trans. Instrum. Meas. 37, 76 (1988).Google Scholar
15. Pollak, M. and Geballe, T. H., Phys. Rev. 122, 1742 (1961).Google Scholar
16. Jonscher, A. K., Nature 267, 673 (1977).Google Scholar
17. Pike, G. E., Phys. Rev. B 6, 1572 (1972).Google Scholar