Skip to main content Accessibility help
×
Home

Variable Angle Spectroscopic Ellipsometry (VASE) for the Study of Ion-Beam and Growth-Modified Solids*

  • John A. Woollam (a1), Paul G. Snyder (a1) and M. C. Rost (a1)

Extract

In the most commonly used form of ellipsometry, a monochromatic collimated linearly polarized light beam is directed at an angle φ to the normal of a sample under study. The specularly reflected beam is, in general, elliptically polarized, and the state of polarization is analyzed using a second polarizer and photodetector.1 Figure 1 shows a schematic of the rotating analyzer automated spectroscopic ellipsometer used at the University of Nebraska. The angle of incidence can be set over a wide range of angles, with a precision and repeatability of ±0.01 angular degrees. A computer controls the monochromator, the azimuth of a stepper motor driven polarizer, a shutter, and the digitization of the detector signal. There are several other schemes used for acquiring ellipsometric data, and these are discussed in several sources.

Copyright

Footnotes

Hide All
*

Research supported by NASA Lewis Grant NAG-3-95.

Footnotes

References

Hide All
1. Azzam, R.M.A., and Bashara, N.M., Ellipsometry and Polarized Light, North-Holland Publishing, New York, 1977.
2. Recent Developments in Ellipsometry, Bashara, N.M., Buckman, A.B., and Hall, A.C., Eds., North-Holland Publishing, Amsterdam, 1969.
3. Ellipsometry, Bashara, N.M., and Azzam, R.M.A., Eds., North-Holland Publishing, Amsterdam, 1976.
4. Bu-Abbud, G.H., Bashara, N.M., and Woollam, J.A., Thin Solid Films 38, 27 (1986).
5. Aspnes, D.E., “Characterization of Materials, Interfaces, and Laminar Structures by Optical Spectroscopic Techniques”, in SPIE Symposium on Microlithography, SPIE, Bellingham WA, 1986.
6. Snyder, P.G., Rost, M.C., Bu-Abbud, G.H., Woollam, J.A., and Alterovitz, S.A., J. Appl. Phys. 60, 3293 (1986).
7. Hauge, P.S., and Dill, F.H., IBM J. of Res. & Dev., 17, 472 (1973)
8. Aspnes, D.E., Studna, A.A., Applied Optics 14, 220 (1975).
9. Aspnes, D.E., J. Vac. Sci. Technol. 18, 289 (1981).
10. Snyder, P.G., Woollam, J.A., and Alterovitz, S.A., “Variable Angle of Incidence Spectroscopic Ellipsometry Measurement of the Franz-Keldysh Effect in MODFET Structures”, in Proceedings of the Materials Research Society, 1987, to be published.
11. Aspnes, D.E., Kelso, S.M., Olson, C.G., and Lynch, D.W., Phys. Rev. Letts. 48, 1863 (1982).
12. Aspnes, D.E. and Studna, A.A., Surf. Sci. 96, 294 (1980).
13. Erman, M., Theeton, J.B., Chambon, P., Kelso, S.M., and Aspnes, D.E., J. Appl. Phys. 56, 2664 (1984).
14. Woollam, J.A., Snyder, P.G., McCormick, A.W., Rai, A.K., Ingram, D., and Pronko, P., “Ellipsometric Measurements of MBE Grown Semiconductor Multilayer Thicknesses: A Comparative Study”, J. Applied Physics, to be published.
15. Woollam, J.A., Snyder, P.F., Rost, M.C., Langer, D.W., and Evans, K., Bull. Amr. Phys. Soc. 32, 471 (1987), Paper CH9.
16. Angus, J.C., Koidl, P., and Domitz, S., “Carbon Thin films”, in Plasma Deposited Thin Films, Mort, J., and Jansen, F., Eds., CRC Press, Boca Raton, FL, 1986.
17. Bu-Abbud, G.H., Mathine, D.L., Snyder, P., Woollam, J.A., Poker, D., Bennett, J., Ingram, D., and Pronko, P.P.. J. Appl. Phys. 59, 257 (1986).
18. Snyder, P.G., Rost, M.C., Bu-Abbud, G.H., Oh, J., Woollam, J.A., Poker, D., Aspnes, D.E., Ingram, D., and Pronko, P., J. Appl. Phys. 60, 779 (1986).
19. Snyder, P.G., BuAbbud, G.H., Oh, J., Woollam, J.A., Poker, D., Aspnes, D.E., Ingram, D., and Pronko, P., “Study of Mo, Au, and Ni Implanted Molybdenum Laser Mirrors By Spectroscopic Ellipsometry”, Boulder Laser Damage Symposium, 1985, National Bureau of Standards, 1987, to be published.
20. Snyder, P.G., Massengale, A., Memarzadeh, K., Woollam, J.A., Ingram, D.C., and Pronko, P.P., “Study of Ion Implanted Copper Laser Mirrors By Spectroscopic Ellipsometry”, Materials Research Society Symposium, Beam-Solid Interactions and Transient Processes”, 1987, to be published.
21. Erman, M., Theeton, J.B., J. Appl. Phys. 60, 859 (1986).
22. McMarr, P.J., Vedam, K., and Narayan, J., J. Appl. Phys. 59, 694 (1986).
23. Vasquez, R.P., Madhukar, A., and Tanquay, A.R. Jr., J. Appl. Phys. 58, 2337 (1985).
24. Collins, R.W., Clark, A.H., Guha, S. and Huang, C.Y., J. Appl. Phys. 57, 4566 (1985).
25. Jellison, G.E. Jr., and Lowndes, D.E., Appl. Phys. Lett. 47, 718 (1985).
26. Theeten, J.B., Erman, M., and Dimitriou, P., “Process Control in Semiconductor Technology Using Ellipsometry” in SPIE 176, 196 (1981).
27. Aspnes, D.E., and Chang, R.P.H., Mat. Res. Soc. Symp. 29, 217 (1984).
28. Kelso, S., Nemamich, R.J., Doland, C.M., Proceedings of the MRS 54, 23 (1986).
29. Drevillon, B., Perrin, J., Marbot, R., and Dalby, J.L., Rev. Sci. Instrs. 53, 969 (1982).
30. Cardona, M., “Dielectric Function and Interband Transitions in Semiconductors”, in OM85-Basic Properties of Optical Materials, NBS Special Publication 697, Feldman, A., Ed., U.S. Dept. of Commerce, Washington, D.C. 1985, and references therein.

Variable Angle Spectroscopic Ellipsometry (VASE) for the Study of Ion-Beam and Growth-Modified Solids*

  • John A. Woollam (a1), Paul G. Snyder (a1) and M. C. Rost (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed