Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-21T17:57:35.770Z Has data issue: false hasContentIssue false

Vapor HF Etching for Low Temperature Silicon Epitaxy

Published online by Cambridge University Press:  25 February 2011

Christopher P. D'Emic
Affiliation:
IBM T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598
Joseph M. Blum
Affiliation:
IBM T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598
Susan L. Cohen
Affiliation:
IBM T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598
Robert J. Baseman
Affiliation:
IBM T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598
Monica Gilbert
Affiliation:
IBM T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598
Frank Cardone
Affiliation:
IBM T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598
Carol Stanis
Affiliation:
IBM T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598
Laura Rothman
Affiliation:
IBM T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598
Michael Hill
Affiliation:
Tencore Instruments, 2400 Charleston Rd., Mountain View, CA 94043
Wilbur Krusell
Affiliation:
Watkins-Johnson Co., 440 Kings Village Rd., Scotts Valley, CA 95066
Get access

Abstract

We have evaluated the use of HIF vapor cleaning using an Advantage Edge 2000 commercial etcher as a preclean for low temperature UHV/CVD silicon epitaxy (LTE). Surface analysis by contact angle, XPS and Optically Stimulated Electron Emission (OSEE) measurements indicate that vapor HF treated surfaces have higher levels of impurities and are less stable than surfaces dipped in 10:1 diluted HF. Interfacial SIMS measurements and defect analysis using plan-view TEM after epitaxial growth indicate that the vapor treated samples also had higher levels of interfacial oxygen and surface defects. The results indicate that vapor HF precleaning is less effective for LTE than an aqueous HF dip since it provides poorer quality hydrogen passivation of the silicon surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Grundner, M., Schultz, R. in Deposition and Growth: Limits for Microelectronics, edited by Rubloff, G.. (AIP Conf. Proc. 167, 1987)Google Scholar
2. Heide, P.A.M. van der, Hofman, M.J. Baan and Ronde, H.J., J. Vac. Sci. Technol. A. 7(3), 1719 (1989).CrossRefGoogle Scholar
3. Fenner, D.B., Biegelsen, D.K., and Bringans, R.D., J. Appl. Phys. 66, 419 (1989).Google Scholar
4. Burrows, V.A., Chabal, Y.J., Higashi, G.S., Raghavachari, K. and Christman, S.B., Appl. Phys. Lett. 53, 998 (1988).CrossRefGoogle Scholar
5. Meyerson, B.S., Himpsel, F.J. and Uram, K.J., Appl. Phys. Lett. 57 (10), 1034 (1990).Google Scholar
6.Advantage Production Technology Inc, Product Information.Google Scholar
7.FSI Excalibur Product InformationGoogle Scholar
8. Wong, M., Moslehi, M.M., and Reed, D.W., J. Electrochem. Soc., 138 (6) 1799 (1991).CrossRefGoogle Scholar
9. McIntosh, R.C., Kuan, T.S., DeFresart, E., J. Elect. Mater. 21 (1) 57 (1992).CrossRefGoogle Scholar
10. Kern, W., Puotinen, D.A., RCA Review 31 (2), 187 (1970).Google Scholar
11.Photoacoustic Technol., Inc. Product Information.Google Scholar
12. Williams, R., Goodman, A.M., Appl. Phys. Lett. 25(10), 531 (1974).Google Scholar
13. Cohen, S., to be presented at the 1992 MRS Spring Meeting, San Francisco, CA 1992.Google Scholar
14. Haring, R. and Liehr, M., J. Vac. Sci. Technol., to be published in Proceedings of 1991 Am. Vac. Soc. Meeting, (1991).Google Scholar