Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-25T06:37:26.485Z Has data issue: false hasContentIssue false

Valence Band Discontinuity at and Near The SiO2/Si(111) Interface

Published online by Cambridge University Press:  10 February 2011

Hiroshi Nohira
Affiliation:
Department of Electrical & Electronic Engineering, Musashi Institute of Technology, 1-28-1 Tamazutsumi, Setagaya-ku, Tokyo 158, Japan, nohira@ee.musashi-tech.ac.jp
Takeo Hattori
Affiliation:
Department of Electrical & Electronic Engineering, Musashi Institute of Technology, 1-28-1 Tamazutsumi, Setagaya-ku, Tokyo 158, Japan, nohira@ee.musashi-tech.ac.jp
Get access

Abstract

The changes in X-ray excited valence band of silicon oxide during progressive oxidation of Si(111) surface in 1 Torr dry oxygen at 600–850°C were studied. Following results are obtained: 1) energy level of top of valence band within 0.9 nm from the SiO2/Si interface is different from that of bulk silicon oxide by about 0.2 eV, 2) valence band discontinuity at the interface changes periodically with the interface structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Williams, R., Phys. Rev. A 140 (1965) 569.CrossRefGoogle Scholar
2. Ohmi, T., Morita, M. and Hattori, T., in The Physics and Chemistry of SiO2 and the Si-SiOM2 Interface (Plenum Press, 1988) p.413.CrossRefGoogle Scholar
3. Alay, J. L., Fukuda, M., Bjorkman, C. H., Nakagawa, K., Sasaki, S., Yokoyama, S. and Hirose, M., Jpn. J. Appl. Phys. 34 (1995) L653.CrossRefGoogle Scholar
4. Ikegami, H., Ohmori, K., Ikeda, H., Iwano, H., Zaima, S. and Yasuda, Y., Ext. Abstr. of Intern. Conf. on Solid State Devices and Materials, Osaka, 1995, p. 16.Google Scholar
5. Nohira, H. and Hattori, T., to be published in Appl. Surf. Sci. (1997).Google Scholar
6. Ohishi, K. and Hattori, T., Jpn. J. Appl. Phys. 33 (1994) L675.CrossRefGoogle Scholar
7. Higashi, G. S., Becker, R. S., Chabal, Y. J. and Becker, A. J., Appl. Phys. Lett. 58 (1991) 1656.CrossRefGoogle Scholar
8. Gelius, U., Wannberg, B., Baltzer, P., Fellner-Feldegg, H., Carlsson, G., Johansson, C. -G., Larsson, J., Munger, P. and Vergerfos, G., J. Electron Spectrosc. Relat. Phenom. 52 (1990) 747.CrossRefGoogle Scholar
9. Nohira, H., Tamura, Y., Ogawa, H. and Hattori, T., IEICE Trans. Electron. E75–C (1992) 757.Google Scholar
10. Ishikawa, K., Ogawa, H., Oshida, S., Suzuki, K. and Fujimura, S., Ext. Abstr. of Intern. Conf. on Solid State Devices and Materials, Osaka, 1995, p.500.Google Scholar
11. Sugita, Y., Awaji, N. and Watanabe, S., Ext. Abstr. of Intern. Conf. on Solid State Devices and Materials, Yokohama, 1996, p. 380.Google Scholar
12. Ohishi, K. and Hattori, T., unpublished.Google Scholar