Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-20T05:14:31.493Z Has data issue: false hasContentIssue false

UV Emission Mechanisms in Quaternary AlInGaN Epilayers and Multiple Quantum Wells

Published online by Cambridge University Press:  01 February 2011

Mee-Yi Ryu
Affiliation:
University of South Carolina, Department of Electrical Engineering, Columbia, SC 29208, U.S.A.
C. Q. Chen
Affiliation:
University of South Carolina, Department of Electrical Engineering, Columbia, SC 29208, U.S.A.
E. Kuokstis
Affiliation:
University of South Carolina, Department of Electrical Engineering, Columbia, SC 29208, U.S.A.
J. W. Yang
Affiliation:
University of South Carolina, Department of Electrical Engineering, Columbia, SC 29208, U.S.A.
G. Simin
Affiliation:
University of South Carolina, Department of Electrical Engineering, Columbia, SC 29208, U.S.A.
M. Asif Khan
Affiliation:
University of South Carolina, Department of Electrical Engineering, Columbia, SC 29208, U.S.A.
G. G. Sim
Affiliation:
Dept. of Information and Communications, Kwangju Institute of Science and Technology, Kwangju, 500-712, Republic of Korea
P. W. Yu
Affiliation:
Dept. of Information and Communications, Kwangju Institute of Science and Technology, Kwangju, 500-712, Republic of Korea
Get access

Abstract

We present the results on investigation and analysis of photoluminescence (PL) dynamics of quaternary AlInGaN epilayers and AlInGaN/AlInGaN multiple quantum wells (MQWs) grown by a novel pulsed metalorganic chemical vapor deposition (PMOCVD). The emission peaks in both AlInGaN epilayers and MQWs show a blueshift with increasing excitation power density. The PL emission of quaternary samples is attributed to recombination of carriers/excitons localized at band-tail states. The PL decay time increases with decreasing emission photon energy, which is a characteristic of localized carrier/exciton recombination due to alloy disorder. The obtained properties of AlInGaN materials grown by a PMOCVD are similar to those of InGaN. This indicates that the AlInGaN system is promising for ultraviolet applications such as the InGaN system for blue light emitting diode and laser diode applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nishida, T., Saito, H., and Kobayashi, N., Appl. Phys. Lett. 78, 399 (2001)Google Scholar
2. Kinoshita, A., Hirayama, H., Ainoya, M., Aoyagi, Y., and Hirata, A., Appl. Phys. Lett. 77, 175 (2000)Google Scholar
3. Shatalov, M., Chitnis, A., Adivarahan, V., Lunev, A., Zhang, J., Yang, J. W., Fareed, Q., Simin, G., Zakheim, A., Khan, M. Asif, Gaska, R., and Shur, M. S., Appl. Phys. Lett. 78, 817 (2001)Google Scholar
4. Zhang, J. P., Adivarahan, V., Wang, H. M., Fareed, Q., Kuokstis, E., Chitnis, A., Shatalov, M., Yang, J. W., Simin, G., Khan, M. Asif, Shur, M., and Gaska, R., Jpn. J. Appl. Phys. 40, L921 (2001).Google Scholar
5. Zhang, J., Kuokstis, E., Fareed, Q., Wang, H., Yang, J., Simin, G., Khan, M. Asif, Gaska, R., and Shur, M., Appl. Phys. Lett. 79, 925 (2001)Google Scholar
6. Chen, C., Yang, J., Ryu, M.-Y., Zhang, J., Kuokstis, E., Simin, G., and Khan, M. Asif, Jpn. J. Appl. Phys. (to be published).Google Scholar
7. Ryu, M.-Y., Chen, C. Q., Kuokstis, E., Yang, J. W., Simin, G., and Khan, M. Asif, Appl. Phys. Lett. (to be published).Google Scholar
8. Ryu, M.-Y., Yu, P. W., Shin, E.-j., Lee, J. I., Yu, S. K., Oh, E., Nam, O. H., Sone, C. S., and Park, Y. J., J. Appl. Phys. 89, 634 (2001)Google Scholar
9. Smith, M., Chen, G. D., Lin, J. Y., Jiang, H. X., Khan, M. Asif, and Chen, Q., Appl. Phys. Lett. 69, 2837 (1996)Google Scholar
10. Chichibu, S., Azuhata, T., Sota, T., and Nakamura, S., Appl. Phys. Lett. 69, 4188 (1996)Google Scholar
11. Wang, T., Nakagawa, D., Lachab, M., Sugahara, T., and Sakai, S., Appl. Phys. Lett. 74, 3128 (1999)Google Scholar
12. Bernardini, F., Fiorentini, V., and Vanderbilt, D., Phys. Rev. B 56, R10024 (1997).Google Scholar
13. Cingolani, R., Botchkarev, A., Tang, H., Morkoc, H., Traetta, G., Coli, G., Lomascolo, M., Carlo, A. Di, Sala, F. Della, and Lugli, P., Phys. Rev. B 61, 2711 (2000)Google Scholar
14. Kuokstis, E., Yang, J. W., Simin, G., Khan, M. Asif, Gaska, R., and Shur, M., Appl. Phys. Lett. 80, 977 (2002)Google Scholar
15. Wang, T., Nakagawa, D., Wang, J., Sugahara, T., and Sakai, S., Appl. Phys. Lett. 73, 3571 (1998)Google Scholar
16. Pophristic, M., Long, F. H., Tran, C., Karlicek, R. F. Jr., Feng, Z. C., and Ferguson, I. T., Appl. Phys. Lett. 73, 815 (1998)Google Scholar
17. Narukawa, Y., Kawakami, Y., Fujita, Sz., Fujita, Sg., and Nakamura, S., Phys. Rev. B 55, R1938 (1997).Google Scholar
18. Narukawa, Y., Kawakami, Y., and Fujita, S., and Nakamura, S., Phys. Rev. B 59, 10283 (1999)Google Scholar