Skip to main content Accessibility help
×
Home

The Use of Mechanical Property Measurements to Characterize Gels and Gelation Processes

  • Y. Yang (a1), N. Ichise (a1), Z. Li (a1), Q. Yuan (a1), J. E. Mark (a1), E. K. M. Chan (a2), R. G. Alamo (a2) and L. Mandelkern (a2)...

Abstract

There are a variety of gels (highly swollen solids) that are of considerable interest to polymer scientists, materials scientists, and ceramists. One type consists of typical organic polymers such as polyethylene or polystyrene, in networks which are formed by means of physical cross links, such as crystallites or physical aggregates. Such gels are thermoreversible in that liquefaction occurs upon heating. Another type consists of chain-like structures permanently bonded into covalent networks. These permanently branched and cross-linked chains can be either organic (phenol-formaldehyde resins, epoxies, etc.), or inorganic [silica (SiO2), titania (TiO2), zirconia (ZrO2), etc.] Both the organic and inorganic covalent types have been used to prepare aerogels, and the inorganic ones are now much used to prepare high-tech ceramics by the new sol-gel route.

In the case of the thermoreversible, organic polymer gels, moduli can be measured as a function of concentration, temperature, and structural characteristics of the polymer (molecular weight, molecular weight distribution, and nature and degree of any chain branching). Such equilibrium results give information on the nature of the gels, including the influence of morphology, and the presence of dangling-chain irregularities. Measurements carried out as a function of time, for example, on polyethylene homopolymers and copolymers, can give information about their gelation kinetics.

In the case of the ceramic materials, the evolution of the shear modulus with time is very useful in establishing induction times, rates of gelation, and aging effects. Correlation of such information with results of scattering studies can give much insight into the nature of the sol-gel process.

Copyright

References

Hide All
(1) Flory, P. J. Principles of Polymer Chemistry; Cornell University Press: Ithaca NY, 1953.
(2) Flory, P. J. Faraday Disc. Chem. Soc. 1974, 57, 7.
(3) Lemstra, P. J.; Smith, P. Br. Polym. J. 1980, 12, 212.
(4) Smith, P.; Lemstra, P. J.; Booij, H. C. J. Polym. Sci., Polym. Phys. Ed. 1981, 19, 877.
(5) Okabe, M.; Isayama, M.; Matsuda, H. J. Appl. Polym. Sci. 1985, 30, 4735.
(6) Russo, P. S.; Siripanyo, S.; Saunders, M. J.; Karasz, F. E. Macromolecules 1986, 19, 2856.
(7) Domszy, R. C.; Alamo, R.; Edwards, C. O.; Mandelkern, L. Macromolecules 1986, 19, 310.
(8) Koltisko, B.; Keller, A.; Litt, M.; Baer, E.; Hiltner, A. Macromolecules 1986, 19, 1207.
(9) Sawatari, E.; Okumura, T.; Matsuo, M. Polym. J. 1986, 18, 741.
(10) Reversible Polymeric Gels and Related Systems; Russo, P. S., Ed.; American Chemical Society: Washington, DC, 1987.
(11) Clark, A. H.; Ross-Murphy, S. B. Adv. Polym. Sci. 1987, 83, 57.
(12) Chan, E. K. M.; Mandelkern, L. Preprints, Div. Polym. Chem., Inc., Am. Chem. Soc. 1987, 28(1), 130.
(13) Ulrich, D. R. CHEMTECH 1988, 18, 242.
(14) McKenna, G. B.; Guenet, J.-M. Polym. Commun. 1988, 29, 58.
(15) Ultrastructure Processing of Advanced Ceramics; Mackenzie, J. D.; Ulrich, D. R., Eds.; Wiley: New York, 1988.
(16) Matsuda, H.; Kashiwagi, R.; Okabe, M. Polym. J. 1988, 20, 189.
(17) Ulrich, D. R. J. Non-Cryst. Solids 1998, 100, 174.
(18) McKenna, G. B.; Guenet, J.-M. J. Polym. Sci., Polym. Phys. Ed. 1999, 26, 267.
(19) LeMay, J. D. Preprints, Div. Polym. Mat., Am. Chem. Soc. 1989, 60, 695.
(20) Physical Networks. Polymers and Gels; Burchard, W.; Ross-Murphy, S. B., Eds.; Elsevier: London, 1990.
(21) Djabourov, M. Polym. Int. 1991,25, 135.
(22) Nguyen, H. P.; Delmas, G. Preprints, Div. Polym. Chem., Inc., Am. Chem. Soc. 1991,32(3), 421.
(23) Plazek, D. J.; Chay, I.-C. Preprints, Div. Polym. Chem., Inc., Am. Chem. Soc. 1991,32(3), 433.
(24) Jackson, C. J.; McKenna, G. B. Preprints, Div. Polym. Chem., Inc., Am. Chem. Soc. 1991, 32(3), 439.
(25) Mark, J. E.; Erman, B. Rubberlike Elasticity. A Molecular Primer; Wiley-Interscience: New York, 1988.
(26) Li, Z.; Mark, J. E.; Chan, E. K. M.; Mandelkem, L. Macromolecules 1989, 22, 4273.
(27) Eisenberg, A.; King, M. Ion-Containing Polymers; Academic Press: New York, 1977.
(28) Better Ceramics Through Chemistry; Brinker, C. J.; Clark, D. E.; Ulrich, D. R., Eds.; North Holland: New York, 1984.
(29) Better Ceramics Through Chemistry IV; Zelinski, B. J. J.; Brinker, C. J.; Clark, D. E.; Ulrich, D. R., Eds.; Materials Research Society: Pittsburgh, 1990.
(30) LeMay, J. D.; Hopper, R. W.; Hrubesh, L. W.; Pekala, R. W. MRS Bulletin 1990, 15, 19.
(31) Saunders, P. R.; Ward, A. G. In Proceedings of the Second International Congress of Rheology, Butterworths Sci. Pub.: London, 1953.

The Use of Mechanical Property Measurements to Characterize Gels and Gelation Processes

  • Y. Yang (a1), N. Ichise (a1), Z. Li (a1), Q. Yuan (a1), J. E. Mark (a1), E. K. M. Chan (a2), R. G. Alamo (a2) and L. Mandelkern (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed