Skip to main content Accessibility help
×
Home

Uranium-Series Ages of Secondary Uranium Minerals with Applications to the Long-Term Evolution of Spent Nuclear Fuel

  • R. J. Finch (a1), J. Suksi (a2), K. Rasilainen (a3) and R. C. Ewing (a4)

Abstract

Uranium-series activity ratios for U(VI) minerals from the Shinkolobwe mine in southern Zaire indicate that these minerals have not experienced significant preferential loss of uranium since their formation more than 100,000 years ago. The minerals examined include rutherfordine, UO2CO3, schoepite, [(UO2)8O2(OH)12]·12H2O, becquerelite, Ca[(UO2)6O4(OH)6]·8H2O, and uranophane, Ca[(UO2)2(SiO3OH)2]·5H2O. No correlation between mineral species and mineral age was evident. The oxidative dissolution of primary uraninite (UO2+x) has maintained ground waters supersaturated with respect to all of the secondary U(VI) minerals, providing an inexhaustible source of dissolved U6+ for mineral formation and growth. As long as uraninite persists in an oxidizing environment, the assemblage of secondary U(VI) phases is determined by local ground water chemistry (including transitory changes), but not necessarily a unidirectional reaction path towards equilibrium with U(VI) minerals of lower solubility. Thus the Shinkolobwe mine displays a complex assemblage of U(VI) minerals that reflects variations in the availability of dissolved elements besides U. Similarly, for a geologic repository exposed to oxidizing waters, the assemblage of corrosion products that will form during the corrosion of spent UO2 fuel is likely to be as complex as mineral assemblages found in natural uranium deposits under similar conditions.

Copyright

References

Hide All
[1] Finch, R.J. and Ewing, R.C., SKB Technical Report 91-15 (SKB, Stockholm) 1991.
[2] Wronkiewicz, D.J., Bates, J.K., Gerding, T.J., Veleckis, E. and Tani, B.S., J. Nucl. Mater. 190, 107 (1992).
[3] Casas, I., Bruno, J., Cera, E., Finch, R.J., Ewing, R.C., SKB Technical Report 94-16 (SKB, Stockholm) 1994.
[4] Sandino, A. and Grambow, B., Solubility equilibria in the U(VI)-Ca-K-Cl-H2O system: transformation of schoepite into becquerelite and compreignacite. Radiochimica Acta (1995).
[5] Bruno, J., Casas, I., Cera, E., Ewing, R.C., Finch, R.J., in Scientific Basis for Nuclear Waste Management XVIII, edited by Murakami, T. and Ewing, R.C. (Mater. Res. Soc. Proc. 353, Pittsburgh, PA, 1995) pp. 633639.
[6] Finch, R.J., Suksi, J., Rasilainen, K. and Ewing, R.C. in Scientific Basis for Nuclear Waste Management XVIII., edited by Murakami, T. and Ewing, R.C. (Mater. Res. Soc. Proc. 353, Pittsburgh, PA, 1995) pp. 647652.
[7] Finch, R.J., Suksi, J., Rasilainen, K. and Ewing, R.C., Joint Annual Meeting, Geol. Assoc. Canada / Min. Assoc. Canada, May 17-19, 1995, Abstracts vol.20, A31 (1995).
[8] Finch, R.J., Suksi, J., Rasilainen, K. and Ewing, R.C., Chem. Geol. (submitted).
[9] Gauthier, G., Franqois, A., Deliens, M., and Piret, P., The Mineralogical Record 20, 26 (1989).
[10] Finch, R.J. and Ewing, R.C., J. Nucl. Mater. 190, 133 (1992).
[11] Finch, R.J., Ph.D. thesis, University of New Mexico, 1994.
[12] Rasilainen, K. and Suksi, J., On the quantitative interpretation of uranium series disequilibria (in Finnish). VTT Research Notes 1404, 1992.
[13] Finch, R.J., Miller, M.L. and Ewing, R.C., Radiochimica Acta 58/59, 433 (1992).
[14] Kaufman, A. and Ku, T.-L., Geochim. Cosmochim. Acta 53, 2675 (1989).
[15] Kaufman, A., Ku, T.-L. and Luo, S., Chem. Geol. 120, 175 (1995).
[16] Frondel, C., Systematic Mineralogy of Uranium and Thorium. Geol. Soc. Amer. Bulletin 1064 (1958) 399 pp.
[17] Sergeyeva, E.I., Nikitin, A.A., Khodakovkiy, I.L. and Naumov, G.B, Geokhimiya 11, 1340 (1972) [English translation in: Geochem. Internat. 9, 900 (1972)].
[18] Finch, R.J. and Ewing, R.C., Joint Annual Meeting, Geol. Assoc. Canada / Min. Assoc. Canada, May 17–19, 1995, Abstracts vol.20, A32 (1995).
[19] O'Hare, P.A.G., Lewis, B.M. and Nguyen, S.N., J. Chem. Thermodynamics 20, 1287 (1988).
[20] Nguyen, S.N., Silva, R.J., Weed, H.C. and Andrews, J.E., J. Chem. Thermodynamics 24, 359 (1992).
[21] Vochten, R. and Van Havebeke, L., Mineral. Petrol. 43, 65 (1990).
[22] Finch, R.J. and Ewing, R.C. in Scientific Basis for Nuclear Waste Management XV, edited by Sombret, C. (Mater. Res. Soc. Proc. 257, Pittsburgh, PA, 1992) pp. 465–47 1.
[23] Pearcy, E. et al. Appl. Geochem. 9, 713 (1995).
[24] Murakami, T., Tzuzuki, K., Sato, T., Isobe, H., Ohnuki, T., in Scientific Basis for Nuclear Waste Management XVIII, edited by Murakami, T. and Ewing, R.C. (Mater. Res. Soc. Proc. 353, Pittsburgh, PA, 1995) pp. 12191226.
[25] Pearcy, E.C. and Murphy, W.M., Geochemical Natural Analogs Literature Review, Center for Nuclear Waste Regulatory Analyses Report 90-008 (NRC 02-88-005) 1991.

Related content

Powered by UNSILO

Uranium-Series Ages of Secondary Uranium Minerals with Applications to the Long-Term Evolution of Spent Nuclear Fuel

  • R. J. Finch (a1), J. Suksi (a2), K. Rasilainen (a3) and R. C. Ewing (a4)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.