Skip to main content Accessibility help

Unipolar Switching Behavior in Highly Crystalline Hexagonal Boron Nitride

  • Nikhil Jain (a1), Robin B. Jacobs-Gedrim (a1) and Bin Yu (a1)


We observed resistive switching in highly crystalline layered insulator hexagonal boron nitride (h-BN) under electric field in a nano-device configuration. Two distinct resistive states were observed in the 2D material heterostack. Electrical characterization using capacitance-voltage approach further revealed the role of h-BN as the active switching element. The switching behavior could be attributed to substitutional doping of h-BN under electric field present in the active region, possibly resulting in the formation of multi-element complex in which electrical conductivity depends on the amount of substituted dopant in the boron nitride crystal lattice. Since switching is observed independent of the direction of electric field, it is unipolar in nature. The observed memristance phenomenon in layered insulator may be potentially used in the form of NVM, providing possible direction to implement information storage or reconfigurable logic applications.



Hide All
[1] Lankhorst, M. H. R.; Ketelaars, B. W. S. M. M.; Wolters, R. a. M. Low-cost and Nanoscale Non-volatile Memory Concept for Future Silicon Chips. Nat Mater 2005, 4, 347352.
[2] Yang, J. J.; Pickett, M. D.; Li, X.; Ohlberg, D. A. A.; Stewart, D. R.; Williams, R. S. Memristive Switching Mechanism for Metal/oxide/metal Nanodevices. Nat Nano 2008, 3, 429433.
[3] Yang, J. J.; Strachan, J. P.; Miao, F.; Zhang, M.-X.; Pickett, M. D.; Yi, W.; Ohlberg, D. A. A.; Medeiros-Ribeiro, G.; Williams, R. S. Metal/TiO2 Interfaces for Memristive Switches. Appl. Phys. A 2011, 102, 785789.
[4] Szot, K.; Speier, W.; Bihlmayer, G.; Waser, R. Switching the Electrical Resistance of Individual Dislocations in Single-crystalline SrTiO3. Nat Mater 2006, 5, 312320.
[5] Chen, A.; Haddad, S.; Wu, Y. C.; Lan, Z.; Fang, T. N.; Kaza, S. Switching Characteristics of Cu2O Metal-insulator-metal Resistive Memory. Applied Physics Letters 2007, 91, 123517–123517–3.
[6] Waser, R.; Aono, M. Nanoionics-based Resistive Switching Memories. Nat Mater 2007, 6, 833840.
[7] Choi, B. J.; Jeong, D. S.; Kim, S. K.; Rohde, C.; Choi, S.; Oh, J. H.; Kim, H.-J.; Hwang, C. S.; Szot, K.; Waser, R. et al. . Resistive Switching Mechanism of TiO2 Thin Films Grown by Atomic-layer Deposition. Journal of Applied Physics 2005, 98, 033715–033715–10.
[8] Rozenberg, M. J.; Inoue, H.; Sanchez, M. J. Strong Electron Correlation Effects in Nonvolatile Electronic Memory Devices. Applied Physics Letters 2006, 88, 033510–033510–3.
[9] Fors, R.; Khartsev, S. I.; Grishin, A. M. Giant Resistance Switching in Metal-insulator-manganite Junctions: Evidence for Mott Transition. Phys. Rev. B 2005, 71, 045305.
[10] Lamb, D. R.; Rundle, P. C. A Non-filamentary Switching Action in Thermally Grown Silicon Dioxide Films. Br. J. Appl. Phys. 1967, 18, 29.
[11] Standley, B.; Bao, W.; Zhang, H.; Bruck, J.; Lau, C. N.; Bockrath, M. Graphene-Based Atomic-Scale Switches. Nano Lett. 2008, 8, 33453349.
[12] Yao, J.; Zhong, L.; Zhang, Z.; He, T.; Jin, Z.; Wheeler, P. J.; Natelson, D.; Tour, J. M. Resistive Switching in Nanogap Systems on SiO2 Substrates. Small 2009, 5, 29102915.
[13] Ci, L.; Song, L.; Jin, C.; Jariwala, D.; Wu, D.; Li, Y.; Srivastava, A.; Wang, Z. F.; Storr, K.; Balicas, L. et al. . Atomic Layers of Hybridized Boron Nitride and Graphene Domains. Nat Mater 2010, 9, 430435.
[14] Alem, N.; Ramasse, Q.; Sarahan, M.; Erni, R.; Yazyev, O.; Erickson, K.; Louie, S.; Zettl, A. Atomic-scale Interaction Dynamics in Few-layer Hexagonal Boron Nitride (h-BN). Microscopy and Microanalysis 2011, 17, 12581259.
[15] Berseneva, N.; Krasheninnikov, A. V.; Nieminen, R. M. Mechanisms of Postsynthesis Doping of Boron Nitride Nanostructures with Carbon from First-Principles Simulations. Phys. Rev. Lett. 2011, 107, 035501.
[16] Murali, R.; Yang, Y.; Brenner, K.; Beck, T.; Meindl, J. D. Breakdown Current Density of Graphene Nanoribbons. Applied Physics Letters 2009, 94, 243114–243114–3.
[17] Lipp, A.; Schwetz, K. A.; Hunold, K. Hexagonal Boron Nitride: Fabrication, Properties and Applications. Journal of the European Ceramic Society 1989, 5, 39.
[18] Park, H.; Wadehra, A.; Wilkins, J. W.; Castro Neto, A. H. Magnetic States and Optical Properties of Single-layer Carbon-doped Hexagonal Boron Nitride. Applied Physics Letters 2012, 100, 253115–253115–4.
[19] Wei, X.; Wang, M.-S.; Bando, Y.; Golberg, D. Electron-Beam-Induced Substitutional Carbon Doping of Boron Nitride Nanosheets, Nanoribbons, and Nanotubes. ACS Nano 2011, 5, 29162922.


Unipolar Switching Behavior in Highly Crystalline Hexagonal Boron Nitride

  • Nikhil Jain (a1), Robin B. Jacobs-Gedrim (a1) and Bin Yu (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed