Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-07-01T20:53:52.804Z Has data issue: false hasContentIssue false

Understanding the Pyramidal Growth of GaN

Published online by Cambridge University Press:  21 February 2011

J.-L. Rouviere
Affiliation:
CEA/Grenoble Département de Recherche Fondamentale sur la Matière Condensée/SP2M/LS 17 rue des Martyrs - 38054 Grenoble Cedex 9, France
M. Arlery
Affiliation:
CEA/Grenoble Département de Recherche Fondamentale sur la Matière Condensée/SP2M/LS 17 rue des Martyrs - 38054 Grenoble Cedex 9, France
A. Bourret
Affiliation:
CEA/Grenoble Département de Recherche Fondamentale sur la Matière Condensée/SP2M/LS 17 rue des Martyrs - 38054 Grenoble Cedex 9, France
R. Niebuhr
Affiliation:
Fraunhofer-Institut for Applied Solid State Physics Tullast. 72, 79108 Freiburg i.Br. Germany
K.-H. Bachem
Affiliation:
Fraunhofer-Institut for Applied Solid State Physics Tullast. 72, 79108 Freiburg i.Br. Germany
Get access

Abstract

By a combination of conventional, HREM and CBED TEM experiments we have studied wurtzite GaN layers grown by Metal-Organic Chemical Vapour Deposition (MOCVD) on (0001)Al2O3. We experimentally determine the structure of the macroscopic hexagonal pyramids that are visible at the surface of the layers when no optimised buffer is introduced. These pyramids look like hexagonal volcanoes with one hexagonal microscopic chimney (up to 75nm wide) at their core. The crystal inside the chimney is a pure GaN crystal with a polarity opposed to the one of the neighbouring material : the GaN layers grown on (0001)Al2O3 are everywhere Ga-terminated except in the chimneys where they are N-terminated. Some of the N-terminated chimneys grow faster and form macroscopic hexagonal pyramids. Chimneys bounded by Inversion Domains Boundaries (IDBs) originate from steps at the surface of the substrate and may be suppressed by an adapted buffer layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Nakamura, S., Mukai, T and Senoh, M, Appl. Phys. Lett. 64 13 (1994)Google Scholar
2 Christmann, M.H., Jones, K.A. and Olsen, K.H., J. Appl. Phys. 45, 4295 (1974)Google Scholar
3 Niebuhr, R., Bachem, K., Dombrowski, K., Maier, M., Pletschen, W. and Kaufmann, U. submitted to J. Electr. Mat. Google Scholar
4 Stadelmann, P.A., Ultramicroscopy, 21, 131 (1987).Google Scholar
5 Lester, S.D., Ponce, F.A., Crawford, M.G. and Steigerwald, D.A. Appl. Phys. Lett. 66, 1249 (1995)Google Scholar
6 Rouviere, J.-L., Arlery, M., Bourret, A., Niebuhr, R. and Bachem, K. presented at the 1995 Microscopy of Semiconductor Materials Conference, Oxford, England, 1995 (unpublished)Google Scholar
7 Liliental-Weber, Z., Sohn, H., Newman, N., Washburn, J., J. Vac. Sci. Technol. B13 (4), 1578 (1995)Google Scholar
8 Qian, W., Rohrer, G.S. and Showronski, M. presented at the 1995 MRS Fall Meeting, Boston, MA, 1995 (unpublished)Google Scholar
9 Rouviere, J.-L., Arlery, M., Bourret, A., Niebuhr, R. and Bachem, K. submitted to J. Appl Phys. Google Scholar
10 Wang, K., Singh, J. and Pavlidis, D., J. Appl. Phys. 76 (6) 30502 (1994)Google Scholar
11 Rossner, U., Rouviere, J.-L., Bourret, A. and Barski, A. presented at the 1995 MRS Fall Meeting, Boston, MA, 1995 (unpublished)Google Scholar