Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-23T20:22:28.902Z Has data issue: false hasContentIssue false

Ultrasonic Force Microscopic Characterization of Nanosized Copper Particles

Published online by Cambridge University Press:  21 February 2011

E. J. Schumaker
Affiliation:
Center for Materials Diagnostics, University of Dayton Research Institute, 300 College Park, Dayton, hio 45469-0121
L. Shen
Affiliation:
Center for Materials Diagnostics, University of Dayton Research Institute, 300 College Park, Dayton, hio 45469-0121
M. J. Ruddell
Affiliation:
Center for Materials Diagnostics, University of Dayton Research Institute, 300 College Park, Dayton, hio 45469-0121
S. Sathish
Affiliation:
Center for Materials Diagnostics, University of Dayton Research Institute, 300 College Park, Dayton, hio 45469-0121
P. T. Murray
Affiliation:
Research Institute & Graduate Materials Engineering, University of Dayton, 300 College Park, Dayton, hio 45469-0160
Get access

Abstract

An Ultrasonic Force Microscope capable of imaging elastic modulus variations with nanometer resolution has been developed by modifying a Scanning Probe Microscope. Images of ultrasonic properties have been simultaneously obtained with the topography images. The technique has been utilized to characterize nanoscale copper droplets and grains deposited on a quartz substrate by ionized cluster beam deposition. Images of the same region obtained with atomic force microscope, lateral force microscope, and ultrasonic force microscope are compared. The origin of image contrast in ultrasonic force microscopy and its utilization for quantitative elastic property measurement of nanometer particles are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cohen, S., Bray, M., and Lightbody, M., eds., Atomic Force Microscopy / Scanning Tunneling Microscopy (Plenum Press, New York 1994), pp. 217299.Google Scholar
2. Meyer, G. and Amer, N. M., Appl. Phys. Lett. 57 (20), 20892091 (1990).Google Scholar
3. Kolosov, O. and Yamanaka, K., Jpn. J. Appl. Phys. 32, L1095–L1098 (1993).Google Scholar
4. Yamanaka, K., Ogiso, H., Kolosov, O., Appl. Phys. Lett. 64, (2), 178180 (1994); Jpn. J. Appl. Phys. 33, 3197-3203 (1994).Google Scholar
5. Rabe, U. and Arnold, W., Appl. Phys. Lett. 64 (12), 14931495 (1994); Ultrasonics Symposium, 367-370 (1994).Google Scholar
6. Scherer, V., Bhushan, B., Rabe, U., and Arnold, W., IEEE Transactions on Magnetics, 33 (5), 40774079 (1997).Google Scholar
7. Burnham, N. A., Kulik, A. J., Gremaud, G., Gallo, P.-J., and Oulevey, F., J. Vac. Sci. Technol. B 14 (2), 794799 (1996).Google Scholar
8. Oulevey, F., Gremaud, G., Sémoroz, A., Kulik, A. J., Burnham, N. A., Dupas, E., and Gourdon, D., Rev. Sci. Instrum. 69 (5), 20852094 (1998).Google Scholar
9. Murray, P. T., Leedy, K. D., Schumaker, E., Sathish, S., Shen, L., and O'Keefe, M. J. in Proceedings of ISCANI, edited by Rao, B. K. (World Scientific, Singapore, 1999). (to be published).Google Scholar