Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-23T13:42:15.375Z Has data issue: false hasContentIssue false

Ultra-High-Tg Chromophoric Polyimides and Polyureas as High-Performance Nonlinear Optical Materials

Published online by Cambridge University Press:  10 February 2011

Lifeng Geng
Affiliation:
Materials Research Center, Northwestern University, Evanston, Illinois 60208-3113(USA)
Jiafu Wang
Affiliation:
Materials Research Center, Northwestern University, Evanston, Illinois 60208-3113(USA)
Tobin J. Marks
Affiliation:
Materials Research Center, Northwestern University, Evanston, Illinois 60208-3113(USA)
Weiping Lin
Affiliation:
Departments of Chemistry, Physics and Astronomy
Haitian Zhou
Affiliation:
Departments of Chemistry, Physics and Astronomy
Paul M. Lunquist
Affiliation:
Departments of Chemistry, Physics and Astronomy
George K. Wong
Affiliation:
Departments of Chemistry, Physics and Astronomy
Get access

Abstract

Three approaches to the construction of high-Tg polyimides and polyureas as second-order NLO materials are discussed. In the first approach, copolymerization of bismaleimides with o,o‚-diallylbisphenol-A followed by functionalization with high-β NLO chromophores using a Mitsunobu procedure yields, after poling and curing, a series of heavily crosslinked chromophoric polyimides with Tg values as high as 320°C and partially resonant χ(2) responses as high as 1.0×10-7 esu (42 pm/V at 1064 nm, 1.17 eV). In the second two approaches, copolymerization of the chromophore 4,5-bis(4‚-aminophenyl)-2-(4„- nitrophenyl)imidazole with bismaleimides or diisocyanates yields polyimides and polyureas with Tg values as high as 292°C and partially resonant χ(2)values as high as 0.62× 10-7 esu(25 pm/V at 1064 nm). It is found that careful attention to the details of curing and crosslinking during poling results in NLO- active matrices exhibiting negligible decay in ( on aging in air at 100°C for periods of 1,000-4,000 h. The imidazole based materials exhibit only about 10% χ(2) decay on aging for 100 h at 200°C under N2.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.a)Dalton, L.R., Harpar, A.W., Ghosn, R., Steier, W.H., Ziari, M., Fetterman, H., Shi, Y. Mustacich, R.V., Jen, A.K.-Y., Shea, K.J., Adv. Mater., 7, 1060(1995). b)D.M.Burland, C.A.Walsh, Chem. Rev., 94, 31(1994) and references therein.Google Scholar
2. Marks, T.J., Ratner, M.A., Angew. Chem. Int. Ed. Engl., 34, 155(1995) and references.Google Scholar
3. Ye, C., Marks, T.J., Yang, J., Wong, G.K., Macromolecules, 20, 2322(1987).Google Scholar
4. Singer, K.D., Kuzyk, M.G., Holland, W.R., Sohn, J.E., Lalama, S.J., Commizzoli, R.B., Katz, H.E., Schilling, M.L., Appl. Phys. Lett., 53, 1800(1988).Google Scholar
5. Eich, M., Sen, A., Looser, H., Bjorklund, G.C., Swalen, J.D., Twieg, R., Yoon, D.Y., J.Appl.Phys., 66, 2599(1989).Google Scholar
6. Lindsay, G.A., Henry, R.A., Hoover, J.M., Knoesen, A., Mortazavi, M.A.. Macromolecules, 25, 4888(1992).Google Scholar
7. Xu, C., Wu, B., Todorova, O., Dalton, L.R., Shi, Y., Ranon, P., Steier, W.H., Macromoleculcs, 26, 5303(1993) and references therein.Google Scholar
8. Yu, L., Chan, W., Dikshit, S., Bao, Z., Shi, Y., Steier, W.H., Appl. Phys. Lett., 60, 1655(1992).Google Scholar
9. Gilmour, S., Montgomery, R.A., Marder, S.R., Cheng, L.-T., Jen, A.K.-Y., Yoming, C., Perry, J.W., Dalton, L.R., Chem. Mater., 6, 1603(1994), and references therein.Google Scholar
10. Rao, V.P., Jen, A.K.-Y., Wong, K.Y., Drost, K.J., Chem. Soc., Chem. Commun., 1118(1993) and references therein.Google Scholar
11. Kanis, D.R., Ratner, M.A., Marks, T.J., in ref. 1b, p. 195, and references therein.Google Scholar
12. Firestone, M.A., Park, J., Minami, N., Ratner, M.A., Marks, T.J., Lin, W., Wong, G.K.. Macromolecules, 28, 2247(1995) and references therein.Google Scholar
13. Firestone, M.A., Marks, T.J., Ratner, M.A., Lin, W., Wong, G.K., Macromolecules, 28. 2260(1995) and references therein.Google Scholar
14. Firestone, M.A., Marks, T.J., Ratner, M.A., Macromolecules, 28, 6296(1995).Google Scholar
15. Hubbard, M.A., Minami, N., Ye, C., Marks, T.J., Wong, G.K., SPIE Proc. 971, 136(1988).Google Scholar
16. Jungbauer, D., Reck, B., Tweig, R., Yoon, D.Y., Willson, C.G., Swalen, J.D., Appl. Phys. Lett., 56, 2610(1990).Google Scholar
17. Park, J., Marks, T.J., Yang, J., Wong, G.K., Chem. Mater. 2, 229(1990).Google Scholar
18. Jin, Y., Carr, S.H., Marks, T.J., Lin, W., Wong, G.K., Chem. Mater. 4, 963(1992).Google Scholar
19. Jeng, R.J., Chen, Y.M., Jain, A.K., Kumar, J., Tripathy, S.K., Chem. Mater. 4, 1141(1992).Google Scholar
20. Wang, J.-F., Hubbard, M.A., Jin, Y., Lin, J.T., Marks, T.J., Lin, W.P., Wong, G.K., SPIE Proc., 2025, 62(1993).Google Scholar
21. Crumpler, E.T., Reznichenko, J.L., Li, D., Marks, T.J., Lin, W., Lundquist, P.M., Wong, G.K., Chem.Mater., 7, 596(1995).Google Scholar
22. Dai, D.R., Marks, T.J., Yang, J., Lundquist, P.M., Wong, G.K., Macromolecules 23, 1891(1990).Google Scholar
23. Verbiest, T., Burland, D.M., Jurich, M.C., Lee, V.Y., Miller, R.D., Volksen, W., Science, 268, 1604(1995)Google Scholar
24. Robello, D.R., Dao, P.T., Phelan, J., Revelli, J., Schildkraut, J.S., Scozzafava, M., Ulman, A., Willand, C.S., Chem. Mater. 4, 425(1992).Google Scholar
25. Hubbard, M.A., Marks, T.J., Lin, W., Wong, G.K., Chem. Mater. 4, 965(1992).Google Scholar
26. Moylan, C.R., Twieg, R.J., Lee, V.Y., Swanson, S.A., Betterton, K.M., Miller, R.D., J. Am. Chem. Soc., 115, 12599(1993), and references therein.Google Scholar
27. Takekoshi, T., Adv. Polymer Sci. 94, 2(1990).Google Scholar
28. Sillion, B., in Comprehensive Polymer Science, Allen, G.; Bevington, J.C.; Eds., Pergamon Press: Oxford, 1989, Chapt.30.Google Scholar
29. Polyimides, , Mittal, K.L., Plenum Press, New York, 1984, Vols. 1,2.Google Scholar
30. Valley, J.F., Wu, J.W., Ermer, S., Stiller, M., Binkley, E.S., Kenney, J.T., Lipscomb, G.F., Lytel, R., Appl. Phys. Lett. 60, 160(1992).Google Scholar
31. Wu, J.W., Valley, J.F., Stiller, M., Ermer, S., Binkley, E.S., Kenney, J.T., Lipscomb, G.F., Lytel, R., Appl.Phys.Lett. 60, 160(1992).Google Scholar
32. Lin, J.T., Hubbard, M.A., Marks, T.J., Lin, W., Wong, G.K., Chem. Mater. 4, 1148(1992).Google Scholar
33. Wang, J.-F., Hubbard, M.A., Jin, Y., Lin, J.T., Marks, T.J., Lin, W.P., Wong, G.K., SPIE Proc., 2025, 62(1993).Google Scholar
34. Tapolsky, G., Lecomte, J.-P., Meyrueix, R., Macromolecules, 26, 7383(1993).Google Scholar
35. Zysset, B., Ahlheim, M., Stahelin, M., Lehr, F., Pretre, P., Kaatz, P., Gunter, P., SPIE Proc..2025, 70(1993).Google Scholar
36. Sotoyama, W., Tatsuura, S., yoshimura, T., Appl. Phys. lett. 64, 2197(1994).Google Scholar
37. Becker, M.W., Sapochak, L.S., Ghosen, R., Xu, C., Dalton, L.R., Shi, Y., Steier, W.H., Jen, A.K.- Y., Chem. mater, 6, 104(1994).Google Scholar
38. Mitsunobu, O., Synthesis, 1(1981).Google Scholar
39. Lundquist, P.M., Yitzchaik, S., Zhang, T., Kanis, D.R., Ratner, M.A., Marks, T.J., Wong, S.K., Appl. Phys. Lett. 64, 2194(1994).Google Scholar
40. Rossi, R.D., in Engineered Materials Handbook, ASM International: Materials Park, Oh, Vol.3, pp. 151(1992).Google Scholar
41. Morgan, R.J., Jurek, R.J., Donnellan, T., Yen, A., Polymer Preprints, 33, 426(1992).Google Scholar
42. Zahir, S., Chaudhari, M.A., King, J., Makromol, I.. Chem. Macromol. Sympos., 25, 141(1989).Google Scholar
43. Albert, I.D.L., Marks, T.J., Ratner, M.A., research in progress.Google Scholar
44. Moylan, C.R., Swanson, S.A., Walsh, C.A., Thackara, J.I., Twieg, R.J., Millcr, R.D., Lec, V.Y., SPIE Proc., 2025, 192(1993).Google Scholar
45. Geng, L., Wang, J., Marks, T.J., Lin, W., Lunduist, P.M., Wong, G.K., SPIE Proc. 2528, 96(1995).Google Scholar