Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-19T01:26:51.943Z Has data issue: false hasContentIssue false

Ultra-High Implant Activation Efficiency In GaN Using Novel High Temperature RTP System

Published online by Cambridge University Press:  10 February 2011

X. A. Cao
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611 USA
C. R. Abernathy
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611 USA
R. K. Singh
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611 USA
S. J. Pearton
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611 USA
M. Fu
Affiliation:
Micropyretics Heaters international, Inc., Cincinnati, OH 45212 USA
V. Sarvepalli
Affiliation:
Micropyretics Heaters international, Inc., Cincinnati, OH 45212 USA
J. A. Sekhar
Affiliation:
Micropyretics Heaters international, Inc., Cincinnati, OH 45212 USA
J. C. Zolper
Affiliation:
Office of Naval Research, Arlington, VA 22217 USA
D. J. Rieger
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185 USA
J. Han
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185 USA
T. J. Drummond
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185 USA
R. J. Shul
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185 USA
R. G. Wilson
Affiliation:
Consultant, Stevenson Ranch, CA 91381 USA
Get access

Abstract

Si+ implant activation efficiencies above 90%, even at doses of 5×1015 cm−2, have been achieved in GaN by RTP at 1400–1500°C for 10 secs. The annealing system utilizes with MoSi2 heating elements capable of operation up to 1900 °C, producing high heating and cooling rates (up to 100 °C · s−1). Unencapsulated GaN show severe surface pitting at 1300 °C, and complete loss of the film by evaporation at 1400 °C. Dissociation of nitrogen from the surface is found to occur with an approximate activation energy of 3.8 eV for GaN (compared to 4.4 eV for AIN and 3.4 eV for InN). Encapsulation with either rf-magnetron reactively sputtered or MOMBE-grown AIN thin films provide protection against GaN surface degradation up to 1400 °C, where peak electron concentrations of ∼5×1020 cm-3 can be achieved in Si-implanted GaN. SIMS profiling showed little measurable redistribution of Si, suggesting Dsi ≤ 10-13 cm2 · s−1 at 1400 °C. The implant activation efficiency decreases at higher temperatures, which may result from SiGa to SiN site switching and resultant self-compensation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Binari, S. C., Rowland, L. B., Kruppa, W., Kelner, G., Doverspike, K. and Gaskill, D. K., Electron. Lett. 30 1248 (1994).Google Scholar
2. Zolper, J. C., Shul, R. J., Baca, A. G., Wilson, R. G., Pearton, S. J. and Stall, R. A., Appl. Phys. Lett. 68 2273 (1996).Google Scholar
3. Zolper, J. C., in GaN and Related Materials (Gordon and Breach, NY 1997).Google Scholar
4. Zolper, J. C. and Shul, R. J., MRS Bulletin 22 36 (1997).Google Scholar
5. Zolper, J. C., Crawford, M. H., Pearton, S. J., Abernathy, C. R., Vartuli, C. B., Yuan, C. and Stall, R. A., J. Electron. Mater. 25 839 (1996).Google Scholar
6. Zolper, J. C., Wilson, R. G., Pearton, S. J. and Stall, R. A., Appl. Phys. Lett. 68 1945 (1996).Google Scholar
7. Tan, H. H., Williams, J. S., Zou, J., Cockayne, D. J. H., Pearton, S. J. and Stall, R. A., Appl. Phys. Lett. 69 2364 (1996).Google Scholar
8. Zolper, J. C., Crawford, M. H., Tan, H. H., Williams, J. S., Zou, J., Cockayne, D. J. H., Paerton, S. J. and Karlicek, R. F., Appl. Phys. Lett. 70 2729 (1997).Google Scholar
9. Strite, S., Epperlein, P. W., Dommen, A., Rockett, A. and Broom, R. F., Mat. Res. Soc. Symp. Proc. 395 795 (1996).Google Scholar
10. Parikh, N., Suvkhanov, A., Lioubtchenko, M., Carlson, E., Bremser, M., Bray, D., Davis, R. and Hunn, J., Nucl. Instr. Meth. B 127/128 463 (1997).Google Scholar
11. Burm, J., Chu, K., Davis, W. A., Schaff, W. J., Eastman, L. F. and Eustis, T. J., Appl. Phys. Lett. 70 464 (1997).Google Scholar
12. Chen, Q., Khan, M. A., Yang, J. W., Sun, C. J., Shur, M. S. and Park, H., Appl. Phys. Lett. 69 794 (1996).Google Scholar
13. Wu, Y. -F., Keller, B. P., Keller, S., Kapolnek, D., Kozodoy, P., DenBaars, S. P. and Mishra, U. K., Appl. Phys. Lett. 69 1438 (1996).Google Scholar
14. Nguyen, N. X., Keller, B. P., Keller, S., Wu, Y. F., Le, M., Nguyen, C., DenBaars, S. P., Mishra, U. K. and Grider, D., Electron. Lett. 33 334 (1997).Google Scholar
15. Maruska, H. P. (private communication).Google Scholar
16. Williams., J. S. Rep. Prog. Phys. 49 491 (1986).Google Scholar
17. Pearton, S. J., Williams, J. S., Short, K. T., Johnson, S. T., Jacobsen, D. C., Poate, J. M., Gibson, J. M. and Boerma, D. O., J. Appl. Phys. 65 1089 (1989).Google Scholar
18. Tan, H. H., Williams, J. S., Zou, J., Cockayne, D. J. H., Pearton, S. J., Zolper, J. C. and Stall, R. A., Appl. Phys. Lett. 72 1190 (1998).Google Scholar
19. Zolper, J. C., Han, J., Biefeld, R. M., Van Deusen, S. B., Wampler, W. R., Pearton, S. J., Williams, J. S., Tan, H. H., Karlicek, R. and Stall, R. A., Mat. Res. Soc. Symp. 468 (1997).Google Scholar
20. Zolper, J. C., Han, J., Biefeld, R. M., Van Deusen, S. B., Wampler, W. R., Reiger, D. J., Pearton, S. J., Williams, J. S., Tan, H. H. and Stall, R., J. Electron. Mater (to be published).Google Scholar
21. Pearton, S. J., Abernathy, C. R., Vartuli, C. B., Zolper, J. C., Yuan, C. and Stall, R. A., Appl. Phys. Lett. 67 1435 (1995).Google Scholar
22. Porowski, S. and Grzegory, I., in GaN and Related Materials, ed. Pearton, S. J. (Gordon and Breach, NY 1997).Google Scholar
23. Newman, N., In GaN Vol. I, ed. Reenkove, J. and Moustakas, T. D. (Academic Press, NY 1998).Google Scholar
24. Zolper, J. C., Han, J., Van Deusen, S. B., Crawford, M. H., Biefeld, R. M., Jun, J., Suski, T., Baranowski, J. M. and Pearton, S. J., 1997 Fall MRS Meeting.Google Scholar
25. Zolper, J. C., Reiger, D. J., Baca, A. G., Pearton, S. J., Lee, J. W. and Stall, R. A., Appl. Phys. Lett. 69 538 (1996).Google Scholar
26. Hong, J., Lee, J. W., MacKenzie, J. D., Donovan, S. M., Abernathy, C. R., Pearton, S. J. and Zolper, J. C., Semicon. Sci. Technol. 12 1310 (1997).Google Scholar