Skip to main content Accessibility help

Ultrafast Self-Assembly of Microscale Particles by Open-Channel Flow

  • Sun Choi (a1), Albert P. Pisano (a2) and Tarek I. Zohdi (a3)


We developed an ultrafast microfluidic approach to self-assemble microparticles in threedimensions by taking advantage of simple photolithography and capillary action of microparticle-dispersed suspensions. The experimental verifications of the assembly of various sizes of silica microspheres and silica gel microspheres within thin and long open microchannels by using this approach have been demonstrated. We anticipate that the presented technique will be widely used in semiconductor and Bio-MEMS (microelectromechanical Systems) fields because it offers a fast way to control 3D, microscale particle assemblies and also has superb compatibility with photolithography, which can lead to an easy integration of particle assembly with existing CMOS (complementary metal-oxide-semiconductor) and MEMS fabrication processes.



Hide All
1. Hänninen, P.; Soini, A.; Meltola, N.; Soini, J.; Soukka, J., & Soini, E., A new microvolume technique for bioaffinity assays using two-photon excitation, Nature Biotechnology, 2000, 18, 548550 .
2. Lilliehorn, T.; Nilsson, M.; Simu, U.; Johansson, S.; Almqvist, M.; Nilsson, J., & Laurell, T.;, Dynamic arraying of microbeads for bioassays in microfluidic channels, Sensors and Actuators B, 2005, 106, 851858.
3. Nie, Q.; Zhang, Y.; Zhang, J., & Zhang, M., Immobilization of polydiacetylene onto silica microbeads for colorimetric detection, J. Mater. Chem, 2006, 16, 546549.
4. Bayerl, T. M. A glass bead game, Nature, 2004, 427, 105106.
5. Rinne, S.A.; Garcia-Santamara, F., & Braun, P.V., Embedded cavities and waveguides in three-dimensional silicon photonic crystals, Nature, 2007, 2, 5256
6. Braun, P. V.; & Wiltzius, P., Electrochemically grown photonic crystals, Nature 402, 603604, (1999).
7. Gracias, D.H.; Tien, J.; Breen, T.L.; Hsu, C., Whitesides G.M.;, Forming Electrical Networks in Three Dimensions by self-assembly, Science, 2000, 289, 11701172.
8. Mezzenga, R.; Ruokolainen, J.; Fredrickson, G.H.; Kramer, D.M.; Heeger, A.J., & Ikkala, O., Templating Organic Semiconductors via Self-Assembly of Polymer Colloids, Science, 2003, 299, 18711874.
9. Grzybowski, B.A.; Winkleman, A.; Wiles, J.A.; Brumer, Y., & Whitesides, G.M., Electrostatic self-assembly of macroscopic crystals using contact electrification, nature materials, 2003, 2, 241245.
10. Walcarius, A.; Sinottier, E.; Etienne, M., & Ghanbaja, J., Electrochemically assisted self-assembly of mesoporous silica thin films, nature materials, 2007, 6, 602608.
11. Qin, D.; Xia, Y;, Xu, B.; Yang, H.; Zhu, C., & Whitesides, G. M., Fabrication of Ordered Two-Dimensional Arrays of Micro-and Nanoparticles Using Patterned Self-Assembled Monolayers as Templates, Adv. Mater., 1999, 11, 14331437.
12. Kim, E.; Xia, Y.; & Whitesides, G.M., Two- and Three-Dimensional Crystallization of Polymeric Microspheres by Micromolding in Capillaries, Adv. Mater., 1996, 8, 245247.
13. Dushkin, C.D.; Yoshimura, H & Nagayama, K., “Nucleation and Growth of Two-Dimensional Colloidal Crystals”, Chemical Physics Letters 204, 455 (1993).
14. Fialkowski, M.; Bitner, A., & Grzybowski, B.A., Self-assembly of polymeric microspheres of complex internal structures, nature materials, 2005, 4, 9397.
15. Chung, S.E.; Park, W.; Shin, S.; Lee, S.A., & Kwon, S., Guided and fluidic self-assembly of microstructures using railed microfluidic channels, nature materials, 2008, 7, 581587.
16. Bowden, N.; Terfort, A.; Carbeck, J., & Whitesides, G.M., Self-Assembly of Mesoscale Objects into Ordered Two-Dimensional Arrays, science, 1997, 276, 233235.
17. Denkov, N.D.; Velev, O.D.; Kralchevsky, P.A.; Ivanov, I.B.; Yoshimura, H., & Nagayama, K., Two-Dimensional Crystallization, Nature, 1993, 361, 26.
18. Denkov, N.D.; Velev, O.D.; Kralchevsky, P.A.; Ivanov, I.B.; Yoshimura, H., & Nagayama, K., Mechanism of Formation of Two-Dimensional Crystals from Latex Particles on Substrates, Langmuir, 1992, 8, 31833190.
19. Dimitrov, A.S., & Nagayama, K., Continuous Convective Assembling of Fine Particles into Two-Dimensional Arrays on Solid Surfaces, Langmuir, 1996, 12, 13031311.
20. Yamaki, M., Higo, J., & Nagayama, K., Size-Dependent Separation of Colloidal Particles In Two-Dimensional Convective Self-Assembly, Langmuir, 1995, 11, 29752978.
21. Yin, Y.; Lu, Y.; Gates, B.; Younan Xia, Y., Template-assisted self-assembly: a practical route to complex aggregates of monodispersed colloids with well-defined sizes, shapes, and structures, J. Am. Chem. Soc. 2001, 123, 87188729.
22. Su, G.; Guo, Q.; Palmer, R.E., Colloidal lines and strings. Langmuir 2003, 19, 96699671.
23. Golding, R.K.; Lewis, P.C.; Kumacheva, E.; Allard, M.; Sargent, E.H., In situ study of colloid crystallization in constrained geometry. Langmuir 2004, 20, 14141419.
24. Kralchevsky, P.A. & Denkov, N.D., Capillary forces and structuring in layers of colloid particles, Curr. Opin. Colloid Interface Sci., 2001, 6, 383401.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed