Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-24T14:15:24.014Z Has data issue: false hasContentIssue false

Ultrafast Magnetization Reversal Dynamics on A Micrometer-Scale Thin Film Element Studied by Time Domain Imaging

Published online by Cambridge University Press:  17 March 2011

B.C. Choi
Affiliation:
Department of Physics, University of Alberta, Edmonton, Alberta T6G 2J1, Canada
G. Ballentine
Affiliation:
Department of Physics, University of Alberta, Edmonton, Alberta T6G 2J1, Canada
M. Belov
Affiliation:
Department of Physics, University of Alberta, Edmonton, Alberta T6G 2J1, Canada
W.K. Hiebert
Affiliation:
Department of Physics, University of Alberta, Edmonton, Alberta T6G 2J1, Canada
M.R. Freeman
Affiliation:
Department of Physics, University of Alberta, Edmonton, Alberta T6G 2J1, Canada
Get access

Abstract

Picosecond time scale magnetization reversal dynamics in a 15nm thick Ni80Fe20 microstructure (10μm×2μm) is studied using time-resolved scanning Kerr microscopy. The time domain images reveal a striking change in the magnetization reversal mode, associated with the dramatic reduction in switching time when the magnetization vector is pulsed by a longitudinal switching field while a steady transverse biasing field is applied to the sample. According to the time domain imaging results, the abrupt change of the switching time is due to the change in the magnetization reversal mode; i.e., the nucleation dominant reversal process is replaced by domain wall motion if transverse biasing field is applied. Furthermore, magnetization oscillations subsequent to reversal are observed at two distinct resonance frequencies, which sensitively depend on the biasing field strength. The high frequency resonance at f=2 GHz is caused by damped precession of the magnetization vector, whereas another mode at f≈0.8 GHz is observed to arise from domain wall oscillation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Back, C.H., Weller, D., Heidmann, J., Mauri, D., Guarisco, D., Garwin, E.L., and Siegmann, H.C., Phys. Rev. Lett. 81, 3251 (1998).Google Scholar
2. Stamm, C., Marty, F., Vaterlaus, A., Weich, V., Egger, S., Maier, U., Ramsperger, U., Fuhrmann, H., and Pescia, D., Science 282, 449 (1998).Google Scholar
3. Hehn, M., Ounadjela, K., Bucher, J.-P., Rousseaux, F., Decanini, D., Bartenlian, B., and Chappert, C., Science 272, 1782 (1996).Google Scholar
4. Cowburn, R.P, Koltsov, D.K., Adeyeye, A.O., Welland, M.E., and Tricker, D.M., Phys. Rev. Lett. 83, 1042 (1999).Google Scholar
5. Koch, R.H., Deak, J.G., Abraham, D.W., Trouilloud, P.L., Altman, R.A., Lu, Yu, Gallagher, W.J., Scheuerlein, R.E., Poche, K.P., and Parkin, S.S.P., Phys. Rev. Lett. 81, 4512 (1998).Google Scholar
6. Koo, H., Luu, T.V., Gomez, R.D., and Metlushko, V.V., Appl. Phys. Lett. 87, 5114 (2000).Google Scholar
7. Shi, J., Tehrani, S., Zhu, T., Zheng, Y. F., and Zhu, J.-G., Appl. Phys. Lett. 74, 2525 (1999).Google Scholar
8. Elezzabi, A.Y., Freeman, M.R., and Johnson, M., Phys. Rev. Lett. 77, 3220 (1996).Google Scholar
9. Hiebert, W.K., Stankiewicz, A., and Freeman, M.R., Phys. Rev. Lett. 79, 1134 (1997).Google Scholar
10. Crawford, T.M., Silva, T.J., Teplin, C.W., and Rogers, C.T., Appl. Phys. Lett. 74, 3386 (1999).Google Scholar
11. Ju, G., Nurmikko, A.V., Farrow, R.F.C., Marks, R.F., Carey, M.J., and Gurney, B.A., Phys. Rev. Lett. 82, 3705 (1999).Google Scholar
12. Ballentine, G.E., Hiebert, W.K., Stankiewicz, A., and Freeman, M.R., J. Appl. Phys. 87, 6830 (2000).Google Scholar
13. Choi, B.C., Belov, M., Ballentine, G.E., Hiebert, W.K., and Freeman, M.R., Phys. Rev. Lett. 87, 6830 (2001).Google Scholar
14. Freeman, M.R. and Hiebert, W.K., to appear in “Spin dynamics in confined magnetic structures”, Hillebrands, B. and Ounadjela, K., editors.Google Scholar
15. Gyorgy, E.M., J. Appl. Phys. 29, 283 (1958).Google Scholar
16. Humphrey, F.B., J. Appl. Phys. 29, 284 (1958).Google Scholar
17. Choi, B.C., Ballentine, G.E., Belov, M., Hiebert, W.K., and Freeman, M.R., to be published.Google Scholar
18. Ramesh, M., Jedryka, E., Wigen, P.E., and Shone, M., J. Appl. Phys. 57, 3701 (1985).Google Scholar