Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-24T18:15:47.407Z Has data issue: false hasContentIssue false

Two Step Process for the Growth of a Thin Layer of Silicon Dioxide for Tunneling Effect Applications

Published online by Cambridge University Press:  10 February 2011

Hugo Águas
Affiliation:
Departamento de Ciência dos Materiais / CENIMAT, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa and Cemop-Uninova, 2825-114 Caparica, Portugal.
Ana Cabrita
Affiliation:
Departamento de Ciência dos Materiais / CENIMAT, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa and Cemop-Uninova, 2825-114 Caparica, Portugal.
Pedro Tonello
Affiliation:
Departamento de Ciência dos Materiais / CENIMAT, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa and Cemop-Uninova, 2825-114 Caparica, Portugal.
Patricia Nunes
Affiliation:
Departamento de Ciência dos Materiais / CENIMAT, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa and Cemop-Uninova, 2825-114 Caparica, Portugal.
Elvira Fortunato
Affiliation:
Departamento de Ciência dos Materiais / CENIMAT, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa and Cemop-Uninova, 2825-114 Caparica, Portugal.
Rodrigo Martins
Affiliation:
Departamento de Ciência dos Materiais / CENIMAT, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa and Cemop-Uninova, 2825-114 Caparica, Portugal.
Get access

Abstract

In today's main crystalline silicon (c-Si) applications in MOS (metal-oxide-silicon), MIS (metalinsulator-semiconductor) or SIS (Semiconductor-Insulator-Semiconductor), the growing of the oxide layer plays the main role, dictating the device performances, in particular if it has to be grown by a low temperature process. Of fundamental importance is the SiO2 interface with the c-Si. A very low defect density interface is desirable so that the number of trapping states can be reduced and the devices performance optimised.

A two step low temperature oxidation process is proposed. The process consists of growing first a layer of oxide by a wet process and then treating the grown oxide with an oxygen plasma. The oxygen ions from the plasma bombard the oxide causing compaction of the oxide and a decrease in the interface roughness and defect density.

Infrared spectroscopy and spectroscopic ellipsometry measurements were performed on the samples to determine the oxide thickness, optical and structural properties. SIS structures were built and capacitance measurements were performed under dark and illuminated conditions from which were inferred the interface defect density and correlated with the oxide growth process.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Malik, A., Fantoni, A. and Martins, R., proceedings of the 14th EC-PVSEC, ed. Palz, W., Ossembrink, H.A. and Helm, P. p. 21722175 (1997).Google Scholar
2 Hasegawa, H., Yamamoto, H., Arimoto, S. and Ohno, H., JARECT vol. 16. Amorphous Semiconductors Technologies & Devices (1984), Hamakawa, Y. (ed.) OHMSHA, LTD and North-Holland Publishing Co.Google Scholar
3 Martinet, C., Devine, R.A.B. and Brunel, M., J. Appl. Phys., 81(10), 69967005 (1997).Google Scholar
4 Nunes, P., Fernandes, B., Fortunato, E., Vilarinho, P. and Martins, R., Thin Solid Films, 337, 176179 (1999).Google Scholar
5 Deshmukh, S. and Aydil, E., J. Vac. Sci. Technol. A 13(5), 23552366 (1995).Google Scholar
6 Queeney, K., Weldon, M., Chang, J., Chabal, Y., Gurevich, A., Sapjeta, J. and Opila, R., J. Appl. Phys., 87(3), 13221330 (2000)Google Scholar
7 Tyagi, M.S., in “Introduction to semiconductor devices and materialsJohn Wiley and Sons, 1991, N.Y.Google Scholar
8 Sze, S. M., Physics of Semiconductor Devices, 2nd edition, (1981), John Wiley & Sons.Google Scholar