Hostname: page-component-7bb8b95d7b-2h6rp Total loading time: 0 Render date: 2024-09-25T06:40:09.723Z Has data issue: false hasContentIssue false

A Tunable Schottky Barrier to n-GaAs Using Ni(Ga,Al) Contacts

Published online by Cambridge University Press:  25 February 2011

C-P. Chen
Affiliation:
Univ. of Wisconsin-Madison, Materials Science and Engineering Department, 1509 University Ave., Madison, WI. 53706
C-H. Jan
Affiliation:
Univ. of Wisconsin-Madison, Materials Science and Engineering Department, 1509 University Ave., Madison, WI. 53706
Y. A. Chang
Affiliation:
Univ. of Wisconsin-Madison, Materials Science and Engineering Department, 1509 University Ave., Madison, WI. 53706
T. Kuech
Affiliation:
Chemical Engineering Department, 1415 Johnson Dr., Madison, WI. 53706
Get access

Abstract

The Schottky barrier heights of Ni(GaxAl1−x)/n-GaAs contacts have been measured by the I-V and C-V techniques. Contacts with x = 0.0, 0.25, 0.5, 0.75, and 1.0 have been prepared, and a wide range of Schottky barrier heights, 0.66 to 0.96 eV, can be achieved by varying the composition of the alloy contacts. After annealing at 400 °C, the barrier heights increase continuously from 0.66 to 0.96 eV as x decreases. The interfacial stability between the Ni(Ga,Al) contacts and GaAs has been examined by SAM. The modulation of the Schottky barrier height and the interface stability are explained by a thermodynamic and kinetic analysis of the GaAs-NiGa-NiAl-AlAs system.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Schottky, W., Naturwissenschaften, 26, 843 (1938).Google Scholar
2. Bardeen, J., Phys. Rev. 21, 717 (1947).Google Scholar
3. Cowley, A.M. and Sze, S.M., J. Appl. Phys. 36, 3212 (1965).Google Scholar
4. Kurtin, S., McGill, T.C. and Mead, C.A., Phys. Rev. Lett. 22, 1433 (1969).Google Scholar
5. Spicer, W.E., Lindau, I., Skeath, P.R., Su, C.Y., J. Vac. Sci. Technol. 17, 1019 (1980).Google Scholar
6. Spicer, W.E., Lindau, I., Skeath, P.R., Su, C.Y., and Chye, P.W., Phys. Rev. Lett. 44, 420 (1980).Google Scholar
7. Daw, M.S. and Smith, D.L., Solid-St. Commun. 37, 205 (1981).Google Scholar
8. Allen, R.E. and Dow, J.D., J. Vac. Sci. Technol. 19, 383 (1981).Google Scholar
9. Heine, V., Phys. Rev. A 138, 1689 (1965).Google Scholar
10. Tejedor, C., Flores, F., and Louis, E., J. Phys. C 10, 2163 (1977).Google Scholar
11. Louis, S.G., and Cohen, M.L., Phys. Rev. B 13, 2461 (1976).Google Scholar
12. Shannon, J.M., Solid-St. Electron. 19, 537 (1976).Google Scholar
13. Shannon, J.M., Appl. Phys. Lett. 25, 75 (1974).Google Scholar
14. Stanchina, W.E., Clark, M.D., Vaidyanathan, K.V., Jullens, R.A., and Crowell, C.R., Electrochem, J.. Soc. 134, 281 (1984).Google Scholar
15. Eizenberg, M., Callegari, A.C., Sadana, D.K., Hovel, H.J., and Jackson, T.N., Appl. Phys. Lett. 54, 24 (1989).Google Scholar
16. Eglash, S.J., Newman, N., Pan, S., Mo, D., Shenai, K., Spicer, W.E., Ponce, F.A., and Collins, D.M., J. Appl. Phys. 61, 5159 (1987).Google Scholar
17. Waldrop, J.R. and Grant, R.W., J. Vac. Sci. Technol. B 6, 1432 (1988)Google Scholar
18. Pearton, S.J., Ren, F., Abernathy, C.R., Hobson, W.S., Chu, S.N.G., and Kovalchick, J., Appl. Phys. Lett. 55, 1342 (1989).Google Scholar
19. Zhang, L.C., Liang, C.L., Cheung, S.K., and Cheung, N.W., J. Vac. Sci. Technol. B 5, 1716 (1987).Google Scholar
20. Sands, T., Chan, W.K., Chang, C.C., Chase, E.W. and Keramidas, V.G., Appl. Phys. Lett. 52, 1338 (1988).Google Scholar
21. Chambers, S.A., J. Vac. Sci. Technol. B 7, 737 (1989).Google Scholar
22. Cheeks, T.L., Sands, T., Nahory, R.E., Harbison, J.P., Gilchrist, H.L., and Keramidas, V.G., J. of Electronic Materials 20, 881 (1991).Google Scholar
23. Mead, C.A., Solid-St. Electron. 9, 1023 (1966).Google Scholar
24. Scranton, R.A., Best, J.S., and McCaldin, J.O., J. Vac. Sci. Technol. 14, 930 (1977).Google Scholar
25. Waldrop, J.R., Appl. Phys. Lett. 47, 1301 (1985).Google Scholar
26. Massies, J., Chaplart, J., Laviron, M., and Linh, N.T., Appl. Phys. Lett. 38, 693 (1981).Google Scholar
27. Schmidt, M.T., Podlesnik, D. V., Yu, C. F., Wu, X., Osgood, R. M. Jr, and Yang, E. S., J. Vac. Sci. Technol., B6, 1436 (1988).Google Scholar
28. Suzuki, M., Murase, K., Asai, K., Kurumada, K., Jpn. J. Appl. Phys. 22, L709 (1983).Google Scholar
29. Jan, C.-H., PhD Thesis, University of Wisconsin, Madison, WI 1991.Google Scholar
30. Chang, Y.A., in Advanced Metallization and Processing for Semiconductor Devices and Circuits-II (Eds. Katz, A., Nission, Y.I., Murarka, S.P. and Harper, O.M.), Mat. Res. Soc. Symp. Proc, 260, xxx (1992).Google Scholar
31. Rhoderick, E.H. and Williams, R.H., in Metal-Semiconductor Contacts Clarendon Press, Oxford, 1988.Google Scholar
32. Okumura, T. and Tu, K.N., J. Appl. Phys. 61, 2955 (1987).Google Scholar