Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-25T09:01:39.386Z Has data issue: false hasContentIssue false

Transverse Electrical Transport in Pentacene Photodiodes

Published online by Cambridge University Press:  01 February 2011

Cristobal Voz
Affiliation:
Departament d'Enginyeria Electronica, Universitat Politecnica de Catalunya, Campus Nord, Barcelona E-08034, Spain
Joaquim Puigdollers
Affiliation:
Departament d'Enginyeria Electronica, Universitat Politecnica de Catalunya, Campus Nord, Barcelona E-08034, Spain
Marta Fonrodona
Affiliation:
Departament d'Enginyeria Electronica, Universitat Politecnica de Catalunya, Campus Nord, Barcelona E-08034, Spain
Isidro Martin
Affiliation:
Departament d'Enginyeria Electronica, Universitat Politecnica de Catalunya, Campus Nord, Barcelona E-08034, Spain
Albert Orpell
Affiliation:
Departament d'Enginyeria Electronica, Universitat Politecnica de Catalunya, Campus Nord, Barcelona E-08034, Spain
Michael Vetter
Affiliation:
Departament d'Enginyeria Electronica, Universitat Politecnica de Catalunya, Campus Nord, Barcelona E-08034, Spain
Francisco Fabregat
Affiliation:
Departament de Ciencies Experimentals, Universitat Jaume I, Campus Riu Sec, Castelló de la Plana E-12080, Spain
Germa Garcia
Affiliation:
Departament de Ciencies Experimentals, Universitat Jaume I, Campus Riu Sec, Castelló de la Plana E-12080, Spain
Juan Bisquert
Affiliation:
Departament de Ciencies Experimentals, Universitat Jaume I, Campus Riu Sec, Castelló de la Plana E-12080, Spain
Ramon Alcubilla
Affiliation:
Departament d'Enginyeria Electronica, Universitat Politecnica de Catalunya, Campus Nord, Barcelona E-08034, Spain
Get access

Abstract

The microstructure of pentacene thin films deposited by thermal evaporation is studied by X-ray diffraction. The transmittance of these films evidences different molecular orbital levels and their related excitonic states. Pentacene photodiodes have been also fabricated on ITO-coated glass substrates with aluminium top electrodes. The current voltage characteristics of such devices are discussed paying special attention to the strongly marked space-charge limited regime. This has been related to trapping in an exponential distribution of localised states in the gap of pentacene. The analysis of the characteristic offers valuable information about such distribution of traps. Finally, the external-quantum-efficiency of these photodiodes shows antibatic features, which evidence the importance of excitonic states in the photovoltaic conversion in pentacene.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Shtein, M., Mapel, J., Benziger, J.B., Forrest, S.R., Appl. Phys. Lett. 81, 268 (2002).Google Scholar
2 Gelinck, G.H., Edzer, H., Huitema, A., Veenendaal, E.V., Cantatore, E., Schrijenemakers, L., Putten, Jan B.P.H. Van Der, Geuns, Tom C.T., Beenhakkers, M., Giesbers, J. B., Huisman, B.H., Meijer, E.J., Benito, E.M., Touwslager, F.J., Marsman, A.W., Rens, Bas J.E. Van, Leeuw, D.M. De, Nature Mater. 3, 106 (2004).Google Scholar
3 Lee, J., Kim, S.S., Kim, K., Kim, J.H., Im, S., Appl. Phys. Lett. 84, 1701 (2004).Google Scholar
4 Yoo, S., Domercq, B., and Kippelen, B., Appl. Phys. Lett. 85, 5427 (2004).Google Scholar
5 Mayer, A.C., Lloyd, M.T., Herman, D.J., Kasen, T.G., and Malliaras, G.G., Appl. Phys. Lett. 85, 6272 (2004).Google Scholar
6 Puigdollers, J., Voz, C., Orpella, A., Martín, I., Vetter, M., Alcubilla, R., Thin Solid Films 427, 367 (2003).Google Scholar
7 Voz, C., Puigdollers, J., Martín, I., Muñoz, D., Orpella, A., Vetter, M. and Alcubilla, R., Solar Energy Materials and Solar Cells, (2004) (in press).Google Scholar
8 Dimitrikopoulos, C.D., Brown, A.R., Pomp, A., J. Appl. Phys. 80, 2501 (1996).Google Scholar
9 Bouchoms, I.P.M., Schoonveld, W.A., Vrijmoeth, J., Klapwijk, T.M., Synth. Met. 104, 175 (1999).Google Scholar
10 Kim, J. S., Lägel, B., Moons, E., Johansson, N., Baikie, I. D., Salaneck, W. R., Friend, R. H. and Cacialli, F., Synth. Met. 111-112, 311 (2000).Google Scholar
11 Brown, T. M., Friend, R. H., Millard, I. S., Lacey, D. J., Butler, T., Burroughes, J. H., and Cacialli, F., J. Appl. Phys. 93, 6159 (2003).Google Scholar
12 Salih, A. J., Lau, S. P., and Marshall, J. M., Maud, J. M., Bowen, W. R., Hilal, N., Lovitt, R. W., and Williams, P. M., Appl. Phys. Lett. 69, 2231 (1996).Google Scholar
13 Minakata, T. and Ozaki, M., J. Appl. Phys. 73, 1819 (1993).Google Scholar
14 Lampert, M.A., Mark, P. in Current Injection in Solids, edited by Booker, Henry G. and DeClaris, Nicholas (Academic Press, 1970) New York.Google Scholar
15 Knipp, D., Street, R. A., and Völkel, A. R., Appl. Phys. Lett. 82, 3907 (2003).Google Scholar
16 Puigdollers, J., Voz, C., Martín, I., Vetter, M., Orpella, A. and Alcubilla, R., Synth. Met. 146, 355 (2004).Google Scholar
17 Park, S.P., Kim, S.S., Kim, J.H., Whang, C.N., Im, S., Appl. Phys. Lett. 80, 2872 (2002).Google Scholar
18 Ghosh, A.K., Feng, T., J. Appl. Phys. 49, 5982 (1978).Google Scholar
19 Harrison, M.G., Grüner, J., Spencer, G.C.W., Phys. Rev. B 55, 7931 (1997).Google Scholar