Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-27T04:36:09.354Z Has data issue: false hasContentIssue false

Transparent p- and n-Type Conductive Oxides With Delafossite Structure

Published online by Cambridge University Press:  10 February 2011

Hiroshi Yanagi
Affiliation:
Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama, Japan
Kazushige Ueda
Affiliation:
Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama, Japan
Shuntaro Ibuki
Affiliation:
Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama, Japan
Tomomi Hase
Affiliation:
Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama, Japan
Hideo Hosono
Affiliation:
Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama, Japan
Get access

Abstract

Thin films of CuAlO2, CuGaO2 and AglnO2 with delafossite structure were prepared on sapphire substrates by pulsed laser deposition method. The resulting CuA102 thin films exhibited p-type conduction and the electrical conductivity at room temperature was 0.3 Scm−1. CuGaO2 thin films were grown epitaxially on μ-Al2O3 (001) surface and showed p-type conduction (conductivity at room temperature = 0.06 S cm−1). The optical band gap was estimated to be ∼3.5 eV for CuAlO2 or ∼3.6 eV for CuGaO2. On the other hand, the thin film of Sn doped AglnO2 exhibited n-type conduction. The optical band gap and electrical conductivity at room temperature were ∼4.1 eV and 70 S cm−1, respectively. The recent work demonstrates the validity of our chemical design concept for p- and n-type transparent conducting oxides, providing an opportunity for realization of transparent p-n junction using delafossite-type oxides.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Kawazoe, H., Yasukawa, M., Hyodo, H., Kurita, M., Yanagi, H., and Hosono, H., Nature, 389, 939 (1997).Google Scholar
2 Yanagi, H., Kawazoe, H., Kudo, A., Yasukawa, M., and Hosono, H., J. Electroceramics, 4, 427 (2000)Google Scholar
3 Kudo, A., Yanagi, H., Hosono, H., and Kawazoe, H., Appl. Phys. Lett., 73, 220 (1998).Google Scholar
4 Kudo, A., Yanagi, H., Ueda, K., Hosono, H., Kawazoe, H., and Yano, Y., Appl. Phys. Lett., 75, 2851 (1999).Google Scholar
5 Otabe, T., Ueda, K., Kudoh, A., Hosono, H., and Kawazoe, H., Appl. Phys. Lett., 72, 1036 (1998).Google Scholar
6 Kawazoe, H., Ueda, N., Un'no, H., Hosono, H., and Tanoue, H., J. Appl. Phys., 76, 7953 (1994)Google Scholar
7 Ishiguro, T., Kitazawa, A., Mizutani, N., and Kato, M., J. Solid State Chem., 40, 170 (1981)Google Scholar
8 Jacob, K. T., and Alcock, C. B., Rev. int. Htes. Temp. et Reftact., 13, 37 (1976).Google Scholar
9 Shannon, R. D., Rogers, D. B., and Prewitt, C. T., Inorg. Chem., 10, 713 (1971)Google Scholar
10 Shin, Y. J., Doumerc, J. P., Dordor, P., Delmas, C., Pouchard, M., and Hagenmuller, P., J. Solid State Chem., 107, 303 (1993)Google Scholar
11 Yanagi, H., Master Thesis, Interdisciplinary Graduate School, Tokyo Inst. Tech. (1997)Google Scholar
12 Ueda, K., Hase, T., Yanagi, H., Kawazoe, H., Hosono, H., Ohta, H., Orita, M., and Hirano, M., submitted to J. Appl. Phys.Google Scholar
13 Yen, J. -J., Atomic Calculation of Photoionization Cross-Sections and Asymmetry Parameters, Gordon and Breach Science Publishers, Pennsylvania, (1993)Google Scholar