Skip to main content Accessibility help
×
Home

Transparent, high refractive index oxides: Control of the nanostructure of titanium hafnium oxide alloys by variation of the ion energy during reactive magnetron sputtering deposition

  • Juan J. Díaz León (a1) (a2), Matthew P. Garrett (a1) (a2), David M. Fryauf (a1) (a2), Junce Zhang (a1) (a2), Kate J. Norris (a1) (a2), Sharka M. Prokes (a3) and Nobuhiko P. Kobayashi (a1) (a2)...

Abstract

A range of optical and optoelectronic applications would benefit from high refractive index (n), dense and transparent films that guide, concentrate and couple light. However, materials with high n usually have a high optical extinction coefficient (κ) which keeps these materials from being suitable for optical components that require long optical paths. We studied titanium hafnium oxide alloy films to obtain high refractive index (n>2) with minimum optical extinction coefficients (κ < 10−5) over the visible and near IR spectrum (380-930 nm). Titanium hafnium oxide alloys were deposited using pulsed DC reactive magnetron sputtering with and without RF substrate bias on silicon dioxide. For a given deposition condition intended for a specific titanium/hafnium molar fraction ratio, the ion energy of deposition species was explicitly controlled by varying the RF substrate bias. Spectroscopic ellipsometry, transmission electron microscopy (TEM), energy dispersive x-ray spectroscopy (EDS) and atomic force microscopy (AFM) were used to characterize the films. It appears that applying RF substrate bias reduces the nanocrystalline size, changes the surface morphology and increases the refractive index while maintaining comparable titanium/hafnium cation molar fraction. Precise control of the nanostructure of ternary metal oxides can alter their macroscopic properties, resulting in improved optical films.

Copyright

References

Hide All
1. Hosono, H. in Handbook of Transparent Conductors (eds. Ginley, D. S. & Perkins, J. D.) 459587 (Springer US, 2011). doi:10.1007/978-1-4419-1638-9.
2. Diaz Leon, J. J., Garrett, M. P., Zhang, J. & Kobayashi, N. P. Aluminum titanium oxide alloys : Deposition of amorphous, transparent, corrosion-resistant films by pulsed DC reactive magnetron sputtering with RF substrate bias. Mater. Sci. Semicond. Process. 36, 96102 (2015).
3. Biluš Abaffy, N., McCulloch, D. G., Partridge, J. G., Evans, P. J. & Triani, G. Engineering titanium and aluminum oxide composites using atomic layer deposition. J. Appl. Phys. 110, 123514 (2011).
4. Kim, D. Low temperature deposition of ITO on organic films by using negative ion assisted dual magnetron sputtering system. Vacuum 81, 279284 (2006).
5. Fang, Q. et al. Investigation of TiO 2 -doped HfO 2 thin films deposited by photo-CVD. Thin Solid Films 428, 263268 (2003).
6. Peacock, P. W. & Robertson, J. Band offsets and Schottky barrier heights of high dielectric constant oxides. J. Appl. Phys. 92, 4712 (2002).
7. Chen, F. et al. A study of mixtures of HfO2 and TiO2 as high-k gate dielectrics. Microelectron. Eng. 72, 263266 (2004).
8. Von Lim, Y., Wong, T. I. & Wang, S. Electronic structure and crystallinity of the HfO2–TiO2 thin films. Thin Solid Films 518, e107e110 (2010).
9. Cisneros-Morales, M. C. & Aita, C. R. Optical absorption at its onset in sputter deposited hafnia-titania nanolaminates. J. Appl. Phys. 108, (2010).
10. Kobayashi, N. P. et al. Titanium hafnium oxide alloy films by a novel sub-atomic layer sputtering process for high index and graded index applications. in MRS Online Proceedings Library 1565 (2013).
11. Martin, P. J. Ion-based methods for optical thin film deposition. Journal of Materials Science 21, 125 (1986).
12. Martinu, L. et al. Advances in Optical Coatings Stimulated by the Development of Deposition Techniques and the Control of Ion Bombardment. SVC Bull. (2014).
13. Amin, a, Köhl, D. & Wuttig, M. The role of energetic ion bombardment during growth of TiO 2 thin films by reactive sputtering. J. Phys. D. Appl. Phys. 43, 405303 (2010).
14. Hultman, L. Low-energy (∼100 eV) ion irradiation during growth of TiN deposited by reactive magnetron sputtering: Effects of ion flux on film microstructure. J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 9, 434 (1991).
15. Musil, J., Šícha, J., Heřman, D. & Čerstvý, R. Role of energy in low-temperature high-rate formation of hydrophilic TiO[sub 2] thin films using pulsed magnetron sputtering. J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 25, 666 (2007).
16. Nečas, D. & Klapetek, P. Gwyddion: an open-source software for SPM data analysis. Centr. Eur. J. Phys 10, 181188 (2012).
17. Ebert, J. Activated reactive evaporation. SPIE 325, 2938 (1982).
18. Elert, G. The physics hypertextbook. (2006).

Keywords

Transparent, high refractive index oxides: Control of the nanostructure of titanium hafnium oxide alloys by variation of the ion energy during reactive magnetron sputtering deposition

  • Juan J. Díaz León (a1) (a2), Matthew P. Garrett (a1) (a2), David M. Fryauf (a1) (a2), Junce Zhang (a1) (a2), Kate J. Norris (a1) (a2), Sharka M. Prokes (a3) and Nobuhiko P. Kobayashi (a1) (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed