Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-23T20:24:38.734Z Has data issue: false hasContentIssue false

Transmission X-Ray Diffraction and Mössbauer Spectroscopy Study of Annealed Magnetoresistive Ag/Ni8iFei9 Multilayers

Published online by Cambridge University Press:  15 February 2011

Sophie Bouat
Affiliation:
Département de Recherche Fondamentale sur la Matière Condensée, CEA-Grenoble 17 Avenue des Martyrs, 38054 Grenoble Cédex 9, France.
Bernard Rodmacq
Affiliation:
Département de Recherche Fondamentale sur la Matière Condensée, CEA-Grenoble 17 Avenue des Martyrs, 38054 Grenoble Cédex 9, France.
Pierrette Auric
Affiliation:
Département de Recherche Fondamentale sur la Matière Condensée, CEA-Grenoble 17 Avenue des Martyrs, 38054 Grenoble Cédex 9, France.
Get access

Abstract

We have studied the variation of the structural and magnetic properties of 5-μm thick self-supported Ag/Ni81Fe19 multilayers upon annealing by means of transmission X-ray diffraction and Mössbauer spectroscopy as well as magnetoresistance (MR) and magnetisation measurements.

In the virgin state, X-ray experiments show that both Ag and NiFe are (111) textured; the (220) in plane distances are 1.3 % smaller for Ag and 2 % larger for NiFe than the bulk values. Mässbauer spectra consist of a pure magnetic sextuplet, meaning that no non-magnetic layer is present at interfaces. The hyperfine field at 4.2 K is found only 3 % smaller than the bulk value and the Curie temperature is estimated from both Mossbauer and magnetisation at about 550 K.

Upon annealing, the (220) Ag distance starts increasing above 250°C, whereas the decrease of the (220) NiFe distance starts at a much lower temperature. The densification of the NiFe layers is accompanied by an increase of the Curie temperature, without any effect on the magnetic moment; both this relaxation and the improved structural quality of the layering are responsible for the increase of the MR ratio from 12 % to 16 % after annealing at 240°C. Although the multilayer structure improves up to 320°C, the appearance of localised defects above 250°C leads to a rapid increase of the remanent magnetisation and to a decrease of the MR ratio.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Baibich, M.N., Broto, J.M., Fert, A., Nguyen Van Dau, F., Petroff, F., Etienne, P., Creuzet, G., Friederich, A. and Chazelas, J., Phys. Rev. Lett. 61, 2472 (1988).Google Scholar
2. Wang, Y., Levy, P.M. and Fry, J.L., Phys. Rev. Lett. 65, 2732 (1990).Google Scholar
3. Bruno, P. and Chappert, C., Phys. Rev. Lett. 67, 1602 (1991).Google Scholar
4. Mouchot, J., Gerard, P. and Rodmacq, B., IEEE Transactions on Magnetics 29, 2732 (1993).Google Scholar
5. Satomi, M. and Sakakima, H., J. Mag. Mag. Mater. 126, 504 (1993).Google Scholar
6. Snoeck, E., Sinclair, R., Parker, M.A., Hylton, T.L., Coffey, K.R., Howard, J.K., Lessmann, A. and Bienenstock, A.I., J. Mag. Mag. Mater. 151, 24 (1995).Google Scholar
7. Rodmacq, B., Palumbo, G. and Gerard, P., J. Magn. Magn. Mat. 118, L11 (1993).Google Scholar
8. Farrow, R.F.C., Parkin, S.S.P., Marks, R.F., Krishnan, K.M. and Thangaraj, N., Appl. Phys. Lett. 69, 1963 (1996).Google Scholar
9. Colino, J.M., Schuller, I.K., Korenivski, V. and Rao, K.V., Phys. Rev. B 54, 13030 (1996).Google Scholar
10. Chladek, M., Dorner, C., Buchal, A., Valvoda, V. and Hoffmann, H., J. Appl. Phys. 80, 1437 (1996).Google Scholar
11. Lucinski, T., Elefant, D., Reiss, G. and Verges, P., J. Mag. Mag. Mater. 162, 29 (1996).Google Scholar
12. Dumpich, G., Wassermann, E.F., Manns, V., Keune, W., Murayama, S. and Miyako, Y., J. Mag. Mag. Mater. 67, 55 (1987).Google Scholar