Hostname: page-component-84b7d79bbc-rnpqb Total loading time: 0 Render date: 2024-07-28T05:43:04.738Z Has data issue: false hasContentIssue false

Translocation of N-acetyl Cysteine Capped Fluorescent Quantum Dots in Plant Tissue: Confocal Imaging Studies

Published online by Cambridge University Press:  08 April 2015

Smruti Das
Affiliation:
NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826.
Jeremy Tharkur
Affiliation:
NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826. Burnett School of Biomedical Sciences, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826.
Laurene Tetard
Affiliation:
NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826. Department of Physics, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826.
Swadeshmukul Santra*
Affiliation:
NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826. Burnett School of Biomedical Sciences, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826. Department of Materials Science and Engineering and University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826. Department of Chemistry, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826.
*
*Corresponding Author: ssantra@mail.ucf.edu
Get access

Abstract

Semiconductor fluorescent quantum dots (Qdots) are popularly used as bioimaging taggants in live cell imaging and spectroscopy. In recent years, Qdots taggants are emerging in agricultural applications. Studies are primarily focused on nanotoxicity of ultra-small size water-soluble Qdots in plant systems. Nanotoxicity is correlated with Qdot core composition and surface coating. However, Qdots with certain chemical composition and surface coating may boost plant growth. In this study, we report that N-acetyl cysteine (NAC) capped ∼3.5 nm size ZnS:Mn/ZnS Qdots (NAC-Qdot) are efficiently uptaken by the snow pea (Pisum sativum L., a model plant) vascular system, enhancing the root growth at a dose level of 80 μg/mL. Fluorescence microscopy studies confirmed localization of NAC-Qdots in the intercellular regions. Germination and growth of the snow pea seeds were found to be strongly dependent on Qdot dosage and incubation time with Qdots. Seed germination reached 100% within 48 hours of NAC-Qdot exposure. Based on our preliminary findings, it is suggested that NAC-Qdot can be used as systemic plant nutrient material for boosting the seed germination and plant growth.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Berg, J. M. and Shi, Y. G., Science 271 (5252), 10811085 (1996).CrossRefGoogle Scholar
Frassinetti, S., Bronzetti, G., Caltavuturo, L., Cini, M. and Della Croce, C., Journal of Environmental Pathology Toxicology and Oncology 25(3), 597610 (2006).CrossRefGoogle Scholar
Clarkson, D. T. and Hanson, J. B., Annual Review of Plant Physiology and Plant Molecular Biology 31, 239298 (1980).CrossRefGoogle Scholar
Ren, H. B., Wu, B. Y., Chen, J. T. and Yan, X. P., Analytical Chemistry 83(21), 82398244 (2011).CrossRefGoogle Scholar
Bryan, J. D. and Gamelin, D. R., in Progress in Inorganic Chemistry, Vol 54, edited by Karlin, K. D. (2005), Vol. 54, pp. 47126.CrossRefGoogle Scholar
Chen, N., He, Y., Su, Y. Y., Li, X. M., Huang, Q., Wang, H. F., Zhang, X. Z., Tai, R. Z. and Fan, C. H., Biomaterials 33(5), 12381244 (2012).CrossRefGoogle Scholar
Cirillo, M., Aubert, T., Gomes, R., Van Deun, R., Emplit, P., Biermann, A., Lange, H., Thomsen, C., Brainis, E. and Hens, Z., Chemistry of Materials 26(2), 11541160 (2014).CrossRefGoogle Scholar
Li, H., Li, M. Y., Shih, W. Y., Lelkes, P. I. and Shih, W. H., Journal of Nanoscience and Nanotechnology 11(4), 35433551 (2011).CrossRefGoogle Scholar
Bera, D., Qian, L., Tseng, T. K. and Holloway, P. H., Materials 3(4), 22602345 (2010).CrossRefGoogle Scholar
Verma, S., Kaniyankandy, S. and Ghosh, H. N., Journal of Physical Chemistry C 117(21), 1090110908 (2013).CrossRefGoogle Scholar
Beltran-Huarac, J., Guinel, M. J. F., Weiner, B. R. and Morell, G., Materials Letters 98, 108111 (2013).CrossRefGoogle Scholar
Circu, M. L. and Aw, T. Y., Free Radical Research 42(8), 689706 (2008).CrossRefGoogle Scholar
Presnell, C. E., Bhatti, G., Numan, L. S., Lerche, M., Alkhateeb, S. K., Ghalib, M., Shammaa, M. and Kavdia, M., Current Neurovascular Research 10(2), 185194 (2013).CrossRefGoogle Scholar
Flora, S. D., Izzotti, A., Agostini, F. D. and Balansky, R. M., Carcinogesis 22(7), 9991013 (2001).CrossRefGoogle Scholar
Santra, S., Yang, H., Stanley, J. T., Holloway, P. H., Moudgil, B. M., Walter, G. and Mericle, R. A., Chemical Communications (25), 31443146 (2005).CrossRefGoogle Scholar
Santra, S., Yang, H. S., Holloway, P. H., Stanley, J. T. and Mericle, R. A., Journal of the American Chemical Society 127(6), 16561657 (2005).CrossRefGoogle Scholar
Liu, F., Zhang, Y., Chu, C. C., Lu, J. J., Yu, J. H. and Song, X. R., Monatshefte Fur Chemie 145(1), 121127 (2014).CrossRefGoogle Scholar
Zhao, D., He, Z. K., Chan, W. H. and Choi, M. M. F., J. Phys. Chem. C 113(4), 12931300 (2009).CrossRefGoogle Scholar
Zhang, B. H., Qi, L. and Wu, F. Y., Microchimica Acta 170 (1-2), 147153 (2010).CrossRefGoogle Scholar
Ma, Y. H., Kuang, L. L., He, X., Bai, W., Ding, Y. Y., Zhang, Z. Y., Zhao, Y. L. and Chai, Z. F., Chemosphere 78(3), 273279 (2010).CrossRefGoogle Scholar