Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-18T10:10:27.132Z Has data issue: false hasContentIssue false

Transition Metal Contamination of Epitaxial Silicon

Published online by Cambridge University Press:  21 February 2011

Martin P. Scott
Affiliation:
Hewlett-Packard Laboratories, 1501 Page Mill Rd., Palo Alto, CA 94304
L. Caubin
Affiliation:
Hewlett-Packard Laboratories, 1501 Page Mill Rd., Palo Alto, CA 94304
D. C. Chen
Affiliation:
Hewlett-Packard Laboratories, 1501 Page Mill Rd., Palo Alto, CA 94304
E. R. Weber
Affiliation:
Hewlett-Packard Laboratories, 1501 Page Mill Rd., Palo Alto, CA 94304
J. Rose
Affiliation:
Hewlett-Packard Laboratories, 1501 Page Mill Rd., Palo Alto, CA 94304
T. Tucker
Affiliation:
Hewlett-Packard Laboratories, 1501 Page Mill Rd., Palo Alto, CA 94304
Get access

Abstract

Deep level defects in p/p+ epitaxial silicon were characterized by deep level transient spectroscopy (DLTS). Two dominant deep level defects were found in all samples which have been identified with Fe and CrB pairs. A third deep level defect was found in most of the samples which has tentatively been identified with Ti. The concentrations of these traps were established in a large number of samples as a function of epitaxial growth condition and substrate oxygen level.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yang, K. H. and Orner, C. H., Defects in Silicon, ed. by Bullis, W. M. and Kimerling, L. C., Electrochemical Society Proceedings, Vol. 83–9, 256–262.Google Scholar
2. Werkhoven, C. J., Aggregation Phenomena of Point Defects in Silicon, ed. by Sirtl, E. and Goorissen, J., Electrochemical Society Proceedings, Vol. 83–4, 144–154.Google Scholar
3. Lou, J. C., Lin, M. S., and Wang, W. S., J. Appl. Phys. 54 (11), Nov. 1983.Google Scholar
4. Dyson, W., Hellwig, L., Moody, J., and Rossi, J., Defects in Silicon, ec. by Bullis, W. M. and Kimerling, L. C., Electrochemical Society Proceedings, Vol. 83–9.Google Scholar
5. Wagner, E. E., Hiller, D., and Mars, D. E., Rev. Sci. Instrum. 51 (9), Sept. 1980.10.1063/1.1136396Google Scholar
6. Jansson, L., Kumar, V., Ledebo, L-A, and Nideborn, K., J. Phys. E:Sci. Instrum., Vol. 24, 1981 Great Britain.Google Scholar
7. Weber, E. R., Appl. Phys. A 30, 122 (1983).10.1007/BF00617708Google Scholar
8. Weber, E. and Riotte, H. G., Appl. Phys. Lett. 33 (5), Sept. 1978.10.1063/1.90412Google Scholar
9. Wunstel, K. and Wagner, P., Appl. Phys. A 27, 207212 (1982).10.1007/BF00619081Google Scholar
10. Conzelmann, H., Graff, K., and Weber, E. R., Appl. Phys. A 30, 169175 (1983).10.1007/BF00620536Google Scholar
11. Chin, J. W., Mills, A. G., and Rohatgi, A., Sol. St. Elec., Vol. 22, 801 (1979).10.1016/0038-1101(79)90130-8Google Scholar
12. Weber, E. R., these proceedings.Google Scholar