Skip to main content Accessibility help

Transistors with a Profiled Active Layer Made by Hot-Wire Cvd

  • H. Meiling (a1), A.M. Brockhoff (a1), J.K. Rath (a1) and R.E.I. Schropp (a1)


In order to obtain stable thin-film silicon devices we are conducting research on the implementation of hot-wire CVD amorphous and polycrystalline silicon in thin-film transistors, TFFs. We present results on TFTs with a profiled active layer (deposited at ≥9 Å/s), and correlate the electrical properties with the structure of the silicon matrix at the insulator/semiconductor interface, as determined with cross-sectional transmission electron microscopy. Devices prepared with an appropriate H2 dilution of SiH4 show cone-shaped crystalline inclusions. These crystals start at the interface in some cases, and in others exhibit an 80nm incubation layer prior to nucleation. The crystals in the TFTs with the incubation layer are not cone-shaped, but are rounded off. The hot-wire CVD deposited devices exhibit a high fieldeffect mobility up to 1.5 cm2V−1s−l. Also, these devices have superior stability upon continuous gate bias stress, as compared to conventional glow-discharge α-Si:H TFTs. We ascribe this to a combination of enhanced structural order of the silicon and a low hydrogen content.



Hide All
[1] Matsumura, H., Appl. Phys. Lett. 51 (11), 804 (1987).
[2] Crandall, R.S., Mahan, A.H., Nelson, B.P., Vanecek, M., and Balberg, I., AIP Conf. Proc. 268, 81 (1992).
[3] Staebler, D.L. and Wronski, C.R., Appl. Phys. Lett. 31 (4), 292 (1977).
[4] Nelson, B.P., Iwaniczko, E., Schropp, R.E.I., Mahan, H., Molenbroek, E.C., Salamon, S., and Crandall, R.S., in Proc. of the 12th European Photovoltaic Solar Energy Conference, 1994, eds. Hill, R., Palz, W., Helm, P., p. 679.
[5] Mahan, A.H., Iwaniczko, E., Nelson, B.P., Reedy, R.C. Jr., Crandall, R.S., Guha, S., and Yang, J., in Conference Record of the 25th IEEE Photovoltaic Specialists Conference (IEEE, New York, NY, U.S.A., 1996), 1065.
[6] Meiling, H. and Schropp, R.E.I., Appl. Phys. Lett. 69, 1062 (1996).
[7] Schropp, R.E.I., Feenstra, K.F., Werf, C.H.M. van der, Holleman, J., and Meiling, H., in Amorphous Silicon Technology— 1996, edited by Hack, M., Schiff, E.A., Wagner, S., Schropp, R., and Matsuda, A. (Materials Research Society, Pittsburgh, 1996), Vol. 420, p. 109.
[8] Schropp, R.E.I., Feenstra, K.F., Molenbroek, E.C., Meiling, H., and Rath, J.K., Philos. Mag. B 76 (3), 309 (1997).
[9] Meiling, H. and Schropp, R.E.I., Appl. Phys. Lett. 70, 2681 (1997).
[10] Meiling, H., Brockhoff, A.M., Rath, J.K., and Schropp, R.E.I., accepted to J. Non-Cryst. Solids (1998).
[11] Chu, V., Jarego, J., Silva, H., Silva, T., Reissner, M., Brogueira, P., and Conde, J.P., Appl. Phys. Lett. 70 (20), 2714 (1997).
[12] Chu, V., Jarego, J., Silva, H., Silva, T., Boucinha, M., Brogueira, P., and Conde, J.P., in Amorphous and Microcrystalline Silicon Technology - 1997, edited by Wagner, S., Hack, M., Schiff, E.A., Schropp, R., and Shimizu, I. (Materials Research Society, Pittsburgh, 1997), Vol. 467, p. 905.
[13] Rath, J.K., Meiling, H., and Schropp, R.E.I., Jpn. J. Appl. Phys. 36 (1), 5436 (1997).
[14] Brockhoff, A.M., Ullersma, E.H.C., Meiling, H., and Habraken, F.H.P.M., to be published.
[15] Madan, A., Rava, P., Schropp, R.E.I., Roedern, B. Von, Appl. Surf. Sci. 7071, 716 (1993).
[16] Street, R.A., Hydrogenated Amorphous Silicon (Cambridge University Press, Cambridge, U.K., 1991).
[17] Rath, J.K., Tichelaar, F.D., Meiling, H., and Schropp, R.E.I., in these proceedings.


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed