Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-19T03:59:40.047Z Has data issue: false hasContentIssue false

Transient Photoresponse from Co Schottky Barriers on AlGaN

Published online by Cambridge University Press:  15 March 2011

R. Schwarz
Affiliation:
Physics Department, Instituto Superior Técnico, IST, P-1096 Lisboa, Portugal Tel: +351-21-841 7775, e-mail: rschwarz@fisica.ist.utl.pt
M. Niehus
Affiliation:
Physics Department, Instituto Superior Técnico, IST, P-1096 Lisboa, Portugal Tel: +351-21-841 7775
L. Melo
Affiliation:
Physics Department, Instituto Superior Técnico, IST, P-1096 Lisboa, Portugal Tel: +351-21-841 7775
P. Brogueira
Affiliation:
Physics Department, Instituto Superior Técnico, IST, P-1096 Lisboa, Portugal Tel: +351-21-841 7775
S. Koynov
Affiliation:
Physics Department, Instituto Superior Técnico, IST, P-1096 Lisboa, Portugal Tel: +351-21-841 7775
M. Heuken
Affiliation:
Aixtron GmbH, D-52072 Aachen, Germany
D. Meister
Affiliation:
I. Physics Department, University of Giessen, D-35392 Giessen, Germany
B.K. Meyer
Affiliation:
I. Physics Department, University of Giessen, D-35392 Giessen, Germany
Get access

Abstract

Co on AlGaN is expected to form a large barrier Schottky contact due to its high work function. We have used this material combination with 18 % of Al in AlxGaN for the study of transient photoresponse in the photovoltaic mode and in secondary photocurrent measurements after pulsed laser excitation. In reverse bias and in short- circuit mode a fast decay with a characteristic time of a few microseconds is dominant at room temperature. This mode is appropriate for UV detector operation. At elevated temperature, a much slower tail extending to several milliseconds is also observed. In forward bias operation the slow tail is dominating at any temperature. We discuss this asymmetry with respect to fast minority carrier collection within the space charge region for primary photocurrents and the slower majority carrier transport in forward bias.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Razeghi, M. and Rogalski, A., J. Appl. Phys. 97 (1996) 7433.Google Scholar
[2] Hove, J.M van, Hickman, R., Klaassen, J.J., Chow, P.P., and Ruden, P.P., Appl. Phys. Lett. 70 (1997) 2282.Google Scholar
[3] Chen, Q., Yang, J.W., Osinsky, A., Gangopadhyay, S., Lim, B., Anwar, M.Z., Khan, M.A., Kuksenkov, D., and Temkin, H., Appl. Phys. Lett. 70 (1997) 2277.Google Scholar
[4] Xu, G.Y., Salvador, A., Kim, W., Fan, Z., Lu, C., Tang, H., Morkoç, H., Smith, G., Estes, M., Goldenberg, B., Yang, W., and Krishnankutty, S., Appl. Phys. Lett. 71 (1997) 2154.Google Scholar
[5] Polyakov, A.Y., Smirnov, N.B., Govorkov, A.V., Greve, D.W., Skowronski, M., Shin, M., and Redwing, J.M., MRS Internet J. Nitride Semicond. Res. 3 (1998) 1.Google Scholar
[6] Yu, L.S., Xing, Q.J., Qiao, D., Lau, S.S., Boutros, K.S., and Redwing, J.M., Appl. Phys. Lett. 73 (1998) 3917.Google Scholar
[7] Meister, D., Topf, M., Dirnstorfer, I., Meyer, B.K., Schwarz, R., and Heuken, M., 3rd Int. Conf. on Nitride Semiconductors (ICNS-3), Nice, 1999.Google Scholar