Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-05-10T18:40:01.423Z Has data issue: false hasContentIssue false

Topography of Si(111): Clean Surface Preparation and Silicon Molecular Beam Epitaxy

Published online by Cambridge University Press:  25 February 2011

R. T. Tung
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, N.J. 07974
F. Schrey
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, N.J. 07974
D. J. Eaglesham
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, N.J. 07974
Get access

Abstract

Line defects at the interfaces of epitaxial silicide layers grown at room temperature on Si(111) are found to correspond to steps on the original surface. This has enabled the examination, by transmission electron microscopy, of the topography of large areas of the Si surface after various treatments. Methods for removal of surface oxide and carbide are compared. Silicon molecular beam epitaxy (MBE) is shown to occur via step-flow mechanism at high temperatures, and through nucleation and growth of islands on terraces at low temperatures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kroemer, H., J. Cryst. Growth, 81, 193 (1987).Google Scholar
2. Bimberg, D., Mars, D., Miller, J. N., Bauer, R. and Oertl, D., J. Vac. Sci. Technol. B 4, 1014 (1986).Google Scholar
3. Petroff, P. M., Gaines, J. M., Tsuchiya, M., Simes, R., Coldren, L., Kroemer, H., English, J. and Gossard, A. C., J. Cryst. Growth 95, 260 (1989).Google Scholar
4. Gronwald, K. D. and Henzler, M., Surface Sci. 117, 180 (1982); R. Altsinger, H. Busch, M. Horn, and M. Henzler, Surf. Sci. 200, 235 (1988).Google Scholar
5. Sakamoto, T., Kawai, N. J., Nakagawa, T., Ohta, K., and Kojima, T., Appl. Phys. Lett. 47, 617 (1985).Google Scholar
6. Aarts, J. and Larsen, P. K., Surface Sci. 188, 391 (1987).Google Scholar
7. Phaneuf, R. J., Williams, E. D., and Bartelt, N. C., Phys. Rev. B 38, 1984 (1988).Google Scholar
8. Tanishiro, Y., Takayanagi, K., and Yagi, K., Ultramicroscopy 11, 95 (1983).Google Scholar
9. Ishikawa, Y., Ikeda, N., Kenmochi, M., and Ichinokawa, T., Surface Sci. 159, 256 (1985).Google Scholar
10. Ichikawa, M., Doi, T., and Hayakawa, K., Surface Sci. 159, 133 (1985); M. Ichi-kawa and T. Doi, Appl. Phys. Lett. 50, 1141 (1987).Google Scholar
11. Telieps, W. and Bauer, E., Surface Sci. 162, 163 (1985); Ber. Bunsenges. Phys. Chem. 90, 197 (1986).Google Scholar
12. Becker, R. S., Golovchenko, J. A., McRae, E. G., and Swartzentruber, B. S., Phys. Rev. Lett. 55, 2028 (1985).Google Scholar
13. Köhler, U., Demuth, J. E. and Hamers, R. J., J. Vac. Sci. Technol. A 7, 2860 (1989).Google Scholar
14. Tung, R. T. and Schrey, F., Appl. Phys. Lett. 54, 852 (1989).Google Scholar
15. Tung, R. T. and Schrey, F., Appl. Phys. Lett. 55, 256 (1989).Google Scholar
16. Tung, R. T. and Schrey, F., Phys. Rev. Lett. 63, 1277 (1989).Google Scholar
17. Tung, R. T., Schrey, F., and Eaglesham, D. J., 10th MBE Workshop, Raleigh, NC, Sept. 1989, to appear in J. Vac. Sci. and Technol..Google Scholar
18. Ishizaka, A. and Shiraki, Y., J. Electrochem. Soc. 133, 666 (1986).Google Scholar
19. Tabe, M., Jpn. J. Appl. Phys. 21, 534 (1982).Google Scholar
20. Tromp, R., Rubloff, G. W., Balk, P., LeGoues, F. K., and Loenen, E. J. van, Phys. Revn. Lett. 55, 2332 (1985).Google Scholar
21.See, for instance, Ota, Y., Thin Solid Films, 106, 1 (1983); and J. C. Bean, J. Cryst. Growth 70, 444 (1984).Google Scholar
22. Allen, F. and Kasper, E., in Silicon-molecular beam epitaxy, Kasper, E. and Bean, J. C., eds., CRC press, Boca Raton, FL, 1988, Vol.1, p.65.Google Scholar
23. Abbink, H. C., Broudy, R. M., and McCarthy, G. P., J. Appl. Phys. 39, 4673 (1968).Google Scholar