Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-25T09:48:25.367Z Has data issue: false hasContentIssue false

Titanium Silicidation Induced Point Defects in SI

Published online by Cambridge University Press:  15 February 2011

S. B. Herner
Affiliation:
Dept. of Materials Science and Engineering, University of Florida, Gainesville, FL 32604
H.-J. Gossmann
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
K. S. Jones
Affiliation:
Dept. of Materials Science and Engineering, University of Florida, Gainesville, FL 32604
Get access

Abstract

Antimony and B-doping superlattices were employed to study the population of Si native point defects after the formation of a TiSi2 film at 800 to 890°C. Formation of a TiSi2 film at these temperatures results in interface roughness on the order of 300 Å (root mean square). Artifacts in SIMS data arising from sputtering through such a rough interface were avoided by chemomechanical polishing of the underlying Si after chemically etching off the TiSi2 film. The resulting Si surface had a roughness of 0.7 Å. Enhancement in the diffusion of Sb and retardation in the diffusion of B over control samples without a TiSi2 film indicate a vacancy supersaturation and an interstitial undersaturation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Fahey, P. M., Griffin, P. B., and Plummer, J. D., Rev. Mod. Phys. 61, 289 (1989).Google Scholar
2. Maex, K., Mat. Sci. Eng. Rep. R11, 53 (1993).Google Scholar
3. Jeon, H., Sukow, C. A., Honeycutt, J. W., Rozgonyi, G. A., and Nemanich, R. J., J. App. Phys. 71, 4269 (1992).Google Scholar
4. Honeycutt, J. W., PhD Thesis, North Carolina State University, 1992.Google Scholar
5. Wittmer, M., Fahey, P., Scilla, G. J., Iyer, S. S., and Tejwani, M., Phys. Rev. Lett. 66, 632 (1991).Google Scholar
6. Tan, T. Y. and Gösele, U., Appl. Phys. A 37, 1 (1985).Google Scholar
7. Gossmann, H.-J., Unterwald, F. C., and Luftman, H. S., J. Appl. Phys. 73, 8237 (1993).Google Scholar
8. Pinto, M. R., Boulin, D. M., Rafferty, C. S., Smith, R. K., Coughran., W. M. Jr., Kizilyali, I. C., and Thoma, M. J., IEDM 92, 923 (1992).Google Scholar
9. Honeycutt, J. W. and Rozgonyi, G. A., Appl. Phys. Lett. 58, 1302 (1991).Google Scholar
10. Fahey, P., Barbuscia, G., Moslehi, M., and Dutton, R. W., Appl. Phys. Lett. 46, 784 (1985).Google Scholar
11. Ronsheim, P. A. and Tejwani, M., Phys. Rev. Lett. 71, 947 (1993).Google Scholar
12. Gossmann, H.-J., Rafferty, C. S., Unterwald, F. C., Boone, T., Mogi, T. K., Thompson, M. O., and Luftman, H. S., Appl. Phys. Lett. 67, 1558 (1995).Google Scholar
13. Zimmermann, H. and Ryssel, H., Appl. Phys. A 55, 121 (1992).Google Scholar