Skip to main content Accessibility help
×
Home

Time-Resolved Imaging and Photoluminescence of Gas-Suspended Nanoparticles Synthesized by Laser Ablation: Dynamics, Transport, Collection, and Ex Situ Analysis

  • D. B. Geohegan (a1), A. A. Puretzky (a1), G. Duscher (a2) and S. J. Pennycook (a1)

Abstract

The dynamics of gas phase nanoparticle formation by pulsed laser ablation into background gases are revealed by imaging photoluminescence and Rayleigh-scattered light from gas-suspended SiOx nanoparticles following ablation of c-Si targets into 1-10 Torr He and Ar. Two sets of dynamic phenomena are presented for times up to 15 s after KrF-laser ablation. Ablation of Si into heavier Ar results in a uniform, stationary plume of nanoparticles while Si ablation into lighter He results in a turbulent ring of particles which propagates forward at 10 m/s. The effects of gas flow on nanoparticle formation, photoluminescence, and collection are described. The first in situ time-resolved photoluminescence spectra from 1-10 nm diameter silicon particles were measured as the nanoparticles were formed and transported. Three spectral bands (1.8, 2.5 and 3.2 eV) similar to photoluminescence from oxidized porous silicon were measured, but with a pronounced vibronic structure. The size and composition of individual gas-condensed nanoparticles were determined by scanning transmission electron microscopy and correlated with the gas-phase photoluminescence. Weblike-aggregate nanoparticle films were collected at room temperature and 77K on c-Si substrates. After standard passivation anneals, the films exhibited strong room temperature photo-luminescence consisting of 3 spectral bands in agreement with the gas-phase measurements, however lacking the vibronic structure. These techniques demonstrate new ways to study and optimize the luminescence of novel optoelectronic nanomaterials during synthesis in the gas phase, prior to deposition.

Copyright

References

Hide All
1. Kroto, H.W., Heath, J. R., O'Brien, S. C., Curl, R.F., and Smalley, R. E., Nature 318, 162 (1985).
2. Wilson, W. L., Szajowski, P. F., Brus, L.E., Science 262, 1242 (1993).
3. Schuppler, S., Friedman, S. L., Marcus, M. A., Adler, D. L., Xie, Y.-H., Ross, F. M., Chabal, Y. J., Harris, T. D., Brus, L.E., Brown, W.L., Chaban, E. E., Szajowski, P. F., Christman, S. B., and Citrin, P. H., Phys. Rev. B 52, 4910 (1995).
4. (a) Chiu, L.A., Seraphin, A. A., and Kolenbrander, K.D., J. Electronic Materials 23, 347 (1994).
(b) Werwa, E., Seraphin, A. A., Chiu, L.A., Zhou, C., and Kolenbrander, K.D., Appl. Phys. Lett. 64, 1821 (1994).
5. (a) El-Shall, M.S., Li, S., and Turkki, T., Graiver, D., Pernisz, U.C., Baraton, M.I., J.Phys. Chem. 99, 17805 (1995).
(b) Li, S., Silvers, S.J., and El-Shall, M. S., J. Phys. Chem. B, 101, 1794 (1997).
6. Movtchan, I.A., Marine, W., Dreyfus, R.W., Le, H.C., Sentis, M., and Autric, M., Appl. Surf. Sci. 96–98, 251 (1996).
7. (a) Yoshida, T., Takeyama, S., Yamada, Y., and Mutoh, K., Appl. Phys. Lett. 68, 1772 (1996).
(b) Yamada, Y., Orii, T., Umezu, I., Takeyama, S. and Yoshida, T., Jpn. J. Appl. Phys. 35, 1361 (1996).
8. Makimura, T., Kunii, Y., and Murakami, K., Jpn. J. Appl. Phys., 35 4780 (1996).
9. (a) Pulsed Laser Deposition of Thin Films, Ed. by Chrisey, D. B. and Hubler, G. K., (Wiley-Interscience Publisher), 1994.,
(b) Lowndes, D.H., Geohegan, D. B., Puretzky, A. A., Norton, D. P., and Rouleau, C.M., Science 273, 898 (1996).
10. Yoshida, T., Yamada, Y., and Orii, T., Technical Digest of the International Electron Devices Meeting, San Francisco, CA, Dec. 8-11, 1996, IEEE.
11. Hirschman, K.D., Tsybeskov, L., Duttagupta, S.P., and Fauchet, P.M., Nature 384, 338 (1996).
12. Muramoto, J., Nakata, Y., Okada, T. and Maeda, M., Jpn. J. Appl. Phys. 36 L563 (1997).
13. Geohegan, D. B., Puretzky, A. A., Duscher, G., and Pennycook, S. J., Appl. Phys. Lett. (in press).
14. Geohegan, D. B., (a) Appl. Phys. Lett. 60, 2732 (1992).
(b) Geohegan, D. B., Thin Solid Films 220, 138 (1992).
15. van de Hulst, H.C.: Light Scattering by Small Particles (Dover Publications, New York, 1981). Rayleigh scattering from silicon spheres, θ = 90°, with (φ = 2.9 × 1017 cm-2 photons, gives 3.1 × 10-7 r6 photons/particle at our CCD detector, requiring a density of r = 7.5 × 1012 r-6 cm-3 particles of radius r (in nm) for 1 count/pixel. To detect 1 nm particles, 2.7% of the plume atoms would need to condense.
16. Broad reviews are given by (a) Fauchet, P. M., J. Lumin. 70, 294 (1996).
(b) Koch, F., Petrova-Koch, V., J. Non-Cryst. Solids 198–200, 846 (1996).
17. (a) Jarrold, Martin F., Science 252, 1085 (1991).
(b) Honea, E.C., Kraus, J. S., Bower, J. E., and Jarrold, M. F., Z. Phys. D 26, 141 (1993).
18. Geohegan, D. B., Puretzky, A. A., Duscher, G., and Pennycook, S. J., submitted.
19. (a) Wood, R.F., Chen, K.R., Lebouef, J. N., Puretzky, A. A., and Geohegan, D. B., Phys. Rev. Lett. 79, 1571 (1997).
(b) Geohegan, D. B. and Puretzky, A. A. Appl. Phys. Lett. 67, 197 (1995).
(c) Appl. Surf. Sci. 96–98, 131 (1996).
20. (a) Proot, J.P., Delerue, C., and Allan, G., Appl. Phys. Lett. 61, 1948 (1992).
(b) Takagahara, T. and Takeda, K., Phys. Rev. B 46, 15578 (1992).
21. Zhao, X., Schoenfeld, O., Komuro, S., Aoyagi, Y., Sugano, T., (a)Phys. Rev. B 50, 18654 (1994).
(b) Zhao, X., Schoenfeld, O., Komuro, S., Aoyagi, Y., Sugano, T., Jpn. J. Appl. Phys. 33, L899 (1994).
22. Hummel, R. E., Ludwig, M.H., Chang, S. S., Fauchet, P.M., Vandyshev, Ju. V., and Tsybeskov, L., Solid State Comm. 95, 553 (1995).
23. Morisaki, H., Hashimoto, H., Ping, F.W., Nozawa, H., and Ono, H., J. Appl. Phys. 74, 2977 (1993).
24. Zhang, Q., Bayliss, S. C., Hutt, D. A., Appl. Phys. Lett. 66, 1977 (1995).
25. Kim, K., et al. Appl. Phys. Lett. 69, 3908 (1996).
26. Choi, W.C., et al. , Appl. Phys. Lett. 69, 3402 (1996).
27. Dinh, L.N., Chase, L.L., Balooch, M., Siekhaus, W.J., and Wooten, F., Phys. Rev. B, 54, 5029 (1996).
28. These include hydrocarbon contaminants (see Canham, L. T., Loni, A., Calcott, P.D. J., Simons, A. J., Reeves, C., Houlton, R., Newey, J. P., Nash, K. J., Cox, T. I., Thin Solid Films 276, 112 (1996).), siloxene (M.S. Brandt, H. D. Fuchs, M. Stutzmann, J. Weber and M. Cardona, Solid State Comm. 81, 307 (1992).), silanol (see Ref. 19) or photofragmentation of the Si-clusters themselves (see K.D. Rinnen and M. L. Mandich, Phys. Rev. Lett. 69, 1823 (1992).)
29. Calcott, P. D. J., Nash, K. J., Canham, L.T., Kane, M. J. (a) Mat. Res. Soc. Symp. Proc. 358, 465 (1995).
(b) Calcott, P. D. J., Nash, K. J., Canham, L.T., Kane, M. J. and Brumhead, D., J. Lumin. 57, 257 (1993).
30. Kanemitsu, Y., Shimuzu, N., Komoda, T., Hemment, P.L.F., and Sealy, B. J., Phys. Rev. B 54, R14329 (1996).
31. Suemoto, T., Tanaka, K., Nakajima, A., and Hakura, T., Phys. Rev. Lett. 70, 3659 (1993).
32. Okada, T., Iwaki, T., Yamamoto, K., Kasahara, H. and Abe, K., Solid State Comm., 49, 809 (1984).
33. Kimura, K. and Iwasaki, S., Mat. Res. Soc. Symp. Proc., Fall 1997, in press.
34. Spectrum courtesy Makimura, T. et al. , unpublished.
35. Brus, Louis, J. Phys. Chem. 98, 3575 (1994).

Time-Resolved Imaging and Photoluminescence of Gas-Suspended Nanoparticles Synthesized by Laser Ablation: Dynamics, Transport, Collection, and Ex Situ Analysis

  • D. B. Geohegan (a1), A. A. Puretzky (a1), G. Duscher (a2) and S. J. Pennycook (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed