Skip to main content Accessibility help

Time Resolved Photoconduction Studies of Uniformly Doped and p-n Junction Si Nanowires

  • Loucas Tsakalakos (a1), Darryl Michael (a2), Jody Fronheiser (a3), Joleyn Balch (a4), Robert Wortman (a5), Paul Wilson (a6), David White (a7), Rolf Boone (a8) and Stephen LeBoeuf (a9)...


The time resolved and DC photoconduction characteristics of Si nanowire devices are described. Si nanowires with diameters ranging from 20-100 nm were grown using the vapor-liquid-solid (VLS) growth mechanism under standard conditions and devices were fabricated in a back-gate field effect transistor (FET) configuration using simple photolithography. It is shown that under certain biasing conditions, illumination with light from light emitting diodes with wavelengths ranging from 480 nm to 625 nm causes changes in current as high as 4%. On the other hand, illumination by a broadband incandescent source causes a ∼4.1% percent change in current. Photoconductive decay curves show bi- and tri-exponential behavior, indicative of multiple potential recombination mechanisms occurring within the Si nanowire devices. p-n doped Si nanowires show similar behavior. Studies under various drain and gate voltages provides insight into the proposed mechanism. It is argued that the Shottky barrier plays a strong role in the observed photoconduction process in these wires, as do transitions involving surface and deep level trap states.



Hide All
1 Xu, Q. F., Schmidt, B., Prdhan, S., and Lipson, M., Nature, 435, 325 (2005).
2 Rong, H., Liu, A., Jones, R., Cohen, O., Hak, D., Nicolaescu, R., Fang, A. and Paniccia, M., Nature 433, 292294 (2005).
4 Wong, H.-S. Philip, Nanoelectronics: Nanotubes, Nanowires, Molecules, and Novel Concepts, in Proceedings of ESSCIRC, IEEE, 2005.
5 Chung, S.W., Yu, J–Y., and Heath, J.R., Appl. Phys. Lett. 76, 2068 (2000).
6 Cui, Y., Zhong, Z., Wang, D., Wang, W.U., and Lieber, C.M., Nano Lett. 3 149 (2003)
7 Freitag, M., Martin, Y., Misewich, J.A., Martel, R., Avouris, Ph., Nano Lett. 3(8); 1067 (2003).
8 Shim, M. and Siddons, G.P., Appl. Phys. Lett. 83, 3564 (2003).
9 Kind, H., Yan, H., Messer, B., Law, M., Yang, P., Adv. Mater. 14 (2), 158 (2002).
10 Han, S., Jin, W., Zhang, D., Tang, T., Li, C., Liu, X., Liu, Z., Lei, B., Zhou, C., Chemical Physics Letters 389, 176 (2004).
11 Ahn, Y., Dunning, J., Park, J., Nano Lett. 5(7), 1367 (2005).
12 Gu, Y., Romankiewicz, J.P., David, J. K., Lensch, J.L., Lauhon, L.J.,, Nano Lett. 6(5); 948 (2006).
13 Wagner, R. S., Ellis, W.C.,, Appl. Phys. Lett., 4, 89 (1964).
14 Bootsma, G. A. and Gassen, H. J., J. Cryst. Growth 10, 223 (1971)
15 Westwater, J., Gosain, D. P., Tomiya, S., and Usui, S., J. Vac. Sci. Technol. B 15, 554 (1997).
16 Cui, Y., Lauhon, L.J., Gudiksen, M.S., Wang, J., and Lieber, C.M., Appl. Phys. Lett.,78, 2214 (2001).
17 Chung, S.W., Yu, J-Y., and Heath, J.R., Appl. Phys. Lett. 76, 2068 (2000)
18 Peng, K.Q., Yan, Y.J., Gao, S.P., Zhu, J., Adv. Mater., 14, 1164 (2002)
19 Michael, Darryl J., Tsakalakos, Loucas, Wortman, Robert, Wilson, Paul, Boone, Rolf, in preparation
20 Stevenson, D.T. and Keyes, R.J., J. Appl. Phys. 26, 190 (1955).
21 Tsakalakos, L., Taylor, S.T., Corderman, R.R., Balch, J., Fronheiser, J, Proc. SPIE 6370, 637019 (2006).
22 Sze, S.M., Physics of Semiconductor Devices (John Wiley & Sonds, New York, 1981), pp. 812.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed