Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-23T09:43:03.123Z Has data issue: false hasContentIssue false

Time Dependent Nanomechanical Response of Nacre

Published online by Cambridge University Press:  26 February 2011

Bedabibhas Mohanty
Affiliation:
bedabibhas.mohanty@ndsu.edu, North Dakota State University, Civil Engineering, Fargo, ND, .58105, United States
Devendra Verma
Affiliation:
Devendra.Verma@ndsu.edu, North Dakota State University, Civil Engineering, Fargo, ND, 58105, United States
Kalpana S Katti
Affiliation:
Kalpana.katti@ndsu.edu, North Dakota State University, Civil Engineering, Fargo, ND, 58105, United States
Dinesh R Katti
Affiliation:
dinesh.katti@ndsu.edu, North Dakota State University, Civil Engineering, Fargo, ND, 58105, United States
Get access

Abstract

Nacre, the shiny inner layer of seashells is a model biomimetic system composed of 95% of inorganic (aragonite) phase and 5% of organic phase (mainly proteins and polysaccharides). Nacre exhibits an interlocked layered “brick and mortar” structure where the bricks are made up of aragonite and mortar is the organic phase. We have performed nanoindentation and dynamic nanoindentation tests to study the nanomechanical and dynamic nanomechanical response of nacre. The indentation experiments performed at low loads indicate an elastic modulus of about 15 GPa for the organic phase. The low load, low penetration experiments appear to be better indicators of nanomechanical behavior. Dynamic nanomechanical response of nacre was studied using dynamic nanoindentation (nano-DMA). Significant increase in the values of tan δ was observed with increase in frequency. Also the dynamic nanoindentation experiments indicate that nacre exhibits viscoelastic behavior. Further, fourier transform spectroscopy experiments of nacre in innate and undisturbed state indicate the presence of water in nacre. The nanograin structure of nacre platelets, as well as the entrapped and adsorbed water, is two important contributors to the viscoelastic response of nacre. Atomic force microscopy experiments also indicate a very high force to remove organic from the aragonite in nacre. These experiments provide important insight into nanomechanical response of nacre, its constituents and also interfaces.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Currey, J. D., Proc. R. Soc. London, Series B 196, 443 (1977).Google Scholar
2. Jackson, A. P., Vincent, J. F. V., and Turner, R. M., Proc. R. Soc. London, Series B 234, 415 (1988).Google Scholar
3. Jackson, A. P., Vincent, J. F. V., and Turner, R. M., J. Mater. Sci. 25, 3173 (1990).Google Scholar
4. Katti, K. S., Katti, D. R., Pradhan, S. M. and Bhosle, A., J. Mat. Res. 20, 1097 (2005).Google Scholar
5. Katti, D. R., Pradhan, S. M., and Katti, K. S., Rev. Adv. Mater. Sci. 6, 162 (2004).Google Scholar
6. Katti, D. R., and Katti, K. S., J. Mater. Sci. 36, 1411 (2001).Google Scholar
7. Verma, D., Katti, K. S., and Katti, D. R., Spectrochimica Acta, Part A 64, 1051 (2006).Google Scholar
8. Verma, D., Katti, K. S., and Katti, D. R., Spectrochimica Acta, Part A.Google Scholar
9. Ghosh, P., Verma, D., Mohanty, B., Katti, K. S., and Katti, D. R., Mat. Res. Soc. Symp. Proc. 898, (2005).Google Scholar
10. Katti, K. S., Mohanty, B., Katti, D. R., J. Mater. Res. 21, 1237 (2006).Google Scholar
11. Mohanty, B., Katti, K. S., Katti, D. R., Verma, D., J. Mater. Res. 21, 2045 (2006).Google Scholar
12. Fisher, T. E., Overhauser, A. F., Vazquez, M. C., Marszalek, P. E., Fernandez, J. M., Trends in Biochemical Sciences 24, 379 (1999).Google Scholar
13. Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J. M., Gaub, H. E., Science 276, 1109 (1997).Google Scholar
14. Rief, M., Gautel, M., Schemmel, A., Gaub, H. E., Biophysical J. 75, 3008 (1998).Google Scholar
15. Oliver, W.C., and Pharr, G.M., J. Mat. Res. 7, 1564 (1992).Google Scholar