Hostname: page-component-7bb8b95d7b-5mhkq Total loading time: 0 Render date: 2024-09-23T16:06:05.356Z Has data issue: false hasContentIssue false

Three Color Detection in the Charge Integration Regime by ATCD for Large Area Applications

Published online by Cambridge University Press:  10 February 2011

F. Irrera
Affiliation:
Dipartimento di Ingegneria Elettronica, Università “La Sapienza” Via Eudossiana 18, 00184 Roma, Italy
F. Lemmi
Affiliation:
Dipartimento di Ingegneria Elettronica, Università “La Sapienza” Via Eudossiana 18, 00184 Roma, Italy
F. Palma
Affiliation:
Dipartimento di Ingegneria Elettronica, Università “La Sapienza” Via Eudossiana 18, 00184 Roma, Italy
Get access

Abstract

Large area color image scanners are currently being widely investigated. The a-Si:H/a-SiC:H Adjustable Threshold Color Detector (ATCD) recently presented by the authors is suitable for greatly simplifying the structure of the arrays since ATCDs have just two external electrical connections. This makes possible to use the row-column addressing of pixels.

In this work, the transient operation of ATCDs in the charge integration regime is discussed. Charge integration is operated by photocurrent discharging the three series connected capacitances which compose the device structure. The penetration depth of the incident radiation depends on the wavelength and determines which of the three capacitances is discharged. The applied bias voltage determines the polarization of the three junctions and the three capacitance actually sensed. Correct blue, green and red light detection is shown in the read-out transients and the read-out and saturation times are presented. Finally design rules of the device and read-out system are given in order to achieve a correct detection of the three colors.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wind, J., Muller, G., Appl. Phys. Lett. 59, 956 (1991).Google Scholar
2. Tsai, H.-K., Lee, S.-C., Appl. Phys. Lett. 52, 275 (1988).Google Scholar
3. Fang, Y.K., Hwang, S.B., Chen, Y.W., Kuo, L.C., IEEE Electron Device Lett. 12, 172 (1991).Google Scholar
4. Rossi, M.C., Vincenzoni, R., Galluzzi, F., IEEE Trans. Electron Devices 42, 2062 (1995).Google Scholar
5. de Cesare, G., Irrera, F., Lemmi, F., Palma, F., IEEE Trans. Electron Devices 42, 835 (1995).Google Scholar
6. Cesare, G. de, Irrera, F., Lemmi, F., Palma, F., Appl. Phys. Lett. 66,1178 (1995).Google Scholar
7. de Cesare, G., Irrera, F., Palma, F., Tucci, M., Jannitti, E., Naletto, G., Nicolosi, P., Appl. Phys. Lett. 67, 335 (1995).Google Scholar
8. Antonuk, L.E., El-Mohri, Y., Huang, W., Siewerdsen, J., Yorkston, J., Street, R.A., MRS Symp. Proc. 336, 855 (1994).Google Scholar
9. Cesare, G. de, Irrera, F., Lemmi, F., Palma, F., Tucci, M., MRS Symp. Proc. 337, 785 (1995).Google Scholar
10. Caputo, D., Cesare, G. de, Irrera, F., Lemmi, F., Masini, G., Palma, F., Tucci, M., in Solid State Phenomena, vol.44–46 - Hydrogenated Amorphous Silicon, part 2 (Scitec Publications Ltd., Switzerland) p.943.Google Scholar
11. Yorkston, J., Antonuk, L.E., Norton, E.J., Boudry, J., Huang, W., Kim, C.W., Longo, M.J., Street, R.A., MRS Symp. Proc. 219, 173 (1991).Google Scholar