Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-25T15:58:17.145Z Has data issue: false hasContentIssue false

Thin Silicon Dioxide using the Rapid Thermal Oxidation Process for Trench Capacitors

Published online by Cambridge University Press:  25 February 2011

Morio Inoue
Affiliation:
Kyoto Research Laboratory, Matsushita Electronics Corporation 19, Nishikujo-Kasugacho, Minami-ku, Kyoto 601, Japan
Kenji Yoneda
Affiliation:
Kyoto Research Laboratory, Matsushita Electronics Corporation 19, Nishikujo-Kasugacho, Minami-ku, Kyoto 601, Japan
Get access

Abstract

Electrical characteristics of trench capacitor using RTO oxide, nitroxide and reoxidized nitroxide as the gate insulator are discussed. High temperature RTO is effective to prevent the oxide thinning at the trench corner and dielectric strength of trench capacitor is improved drastically. The lifetime of trench capacitors using RTO is more than 10 times longer than that of trench capacitors using conventional furnaces. Using reoxidized nitroxide as the gate insulator, higher charge to breakdown is obtained. The RTP is superior to the process using the conventional furnace for gate insulator of trench capacitor. Improvement in temperature uniformity and operation reproducibility are essential to RTP equipments for production use.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1) Imai, K., Yamabe, K., Tsunashima, Y., Iwai, K., Tashio, K., and Tango, H., IEDM Tech. Dig., 702(1985)Google Scholar
(2) Marcus, R.B. and Sheng, T.T., J. Electrochem. Soc., 129, 1278 1982 CrossRefGoogle Scholar
(3) Irene, E.A., Tierney, E., and Angillelo, J., J. Electrochem. Soc., 129, 2594 1982 Google Scholar
(4) Nulman, J., Kurusius, J.P., and Gat, A., IEEE Electron Device Lett., EDL–6, 205 (1985)CrossRefGoogle Scholar
(5) Moslehi, M.M., Shatas, S.C., and Saraswat, K.C., Appl.Phys.Lett., 47, 1353 1985 Google Scholar
(6) Poagon, J.P., Grob, J.J., and Stwck, R., J.Appl.Phys., 59, 3921 1986 Google Scholar
(7) Sato, Y. and Kikuchi, K., J.Electrochem.Soc., 133, 652 1986 Google Scholar
(8) Moslehi, M.M., Han, C.J., and Saraswat, K.C., J.Electrochem.Soc., 132, 2189 (1985)CrossRefGoogle Scholar
(9) Hori, T., Naito, Y. Iwasaki, H., and Esaki, H., IEEE Electron Device Lett., EDL–7, 669 1986 CrossRefGoogle Scholar
(10) Horiike, Y., Okano, H., Yamazaki, T., and Horie, H., Jpn.J.Appl.Phys., 20, 1817 (1981)Google Scholar
(11) Sinclair, R., Kim, K.B., Shippou, O., and Iwasaki, H., J.Electrochem.Soc., 136 511 (1989)CrossRefGoogle Scholar
(12) Nulman, J., Scarpulla, J., Mele, T., and Krusius, J.P., IEDM Tech.Dig., 376 (1985)Google Scholar