Hostname: page-component-7c8c6479df-ph5wq Total loading time: 0 Render date: 2024-03-29T15:58:32.180Z Has data issue: false hasContentIssue false

Thin Films of Semiconducting SnSi Alloys Grown by Pulsed Laser Deposition

Published online by Cambridge University Press:  28 February 2011

Randolph E. Treece
Affiliation:
Naval Research Laboratory, Washington, DC 20375
J. S. Horwitz
Affiliation:
Naval Research Laboratory, Washington, DC 20375
D. B. Chrisey
Affiliation:
Naval Research Laboratory, Washington, DC 20375
J. Tang
Affiliation:
Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90024
R. S. Williams
Affiliation:
Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90024
Get access

Abstract

Semiconducting SnxSi1−x (0≤x≤0.6) thin-film alloys have been grown by pulsed laser deposition (PLD). These new materials are amorphous to X-rays and display small positive optical band gaps, suggesting potential applications in solar cells. The tin silicide films were grown by depositing very thin (1–30 Å) alternating atomic layers from individual Sn and Si targets utilizing an automated multi-target holder coupled to a conventional PLD system. The value of x was selected by controlling the thickness of the atomic layers. The films were characterized by X-ray diffraction, optical absorption, Rutherford backscattering spectroscopy, temperature-dependent resistivity, and X-ray photoelectron spectroscopy. Tin segregation is prevented by keeping the Sn layer thickness below a critical value. Compositions beyond x > 0.6 led to semimetallic SnxSi1−x films with tin crystallites.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Vérié, C., Rochette, J. F., Rebouillat, J. P., J. de Phys. 42 coll., C4-667 (1981).Google Scholar
2 Vergnat, M., Marchal, G., Piecuch, M., Gerl, M., Solid State Commun. 50, 237, (1984); A. Mohamedi, M.L. Thèye, M. Vergnat, G. Marchal, M. Piecuch, Phys. Rev. B, 39, 3711 (1989)Google Scholar
3 Mittas, A., Georgoulas, N., Girginoudi, D., Thanailakis, A., Phys. Stat. Sol (a), 116, 725 (1989)Google Scholar
4 Vergnat, M., Marchal, G., Mangin, Ph., J. Non-Cryst. Solids, 137&138, 907 (1991)Google Scholar
5 Girginoudi, D., Georgoulas, N., Thanailakis, A., J. Appl. Phys., 66, 354 (1989)Google Scholar
6 Marakhonov, V., Rogachev, N., Ishkalov, J., Marakhonov, J., Terukov, E., Chelnokov, V., J. Non-Cryst. Solids, 137 & 138, 817 (1991)Google Scholar
7 Treece, R. E., Horwitz, J. S., and Chrisey, D. B., Chem. Mater. 6, 0000 (1994); R. E. Treece, J.S. Horwitz, J. H. Claassen, and D. B. Chrisey, Appl. Phys. Lett. 65, 0000 (1994); R. E. Treece, J. S. Horwitz, and D. B. Chrisey, Mater. Res. Soc. Proc. 327, 245 (1994).Google Scholar
8 Tauc, J., Grigorovici, R., Vancu, A., Phys. Stat. Sol. 15, 627 (1966); W. B. Jackson, S. M. Kelso, C. C. Tsai, J. W. Allen, S.-J. Oh, Phys. Rev. B 31, 5187 (1985)Google Scholar