Skip to main content Accessibility help
×
Home

Thickness-dependent Crystallization Behavior of Phase Change Materials

  • Simone Raoux (a1), Jean L. Jordan-Sweet (a2) and Andrew J. Kellock (a3)

Abstract

We have investigated the crystallization behavior of phase change materials as a function of their thickness. Thin films of variable thickness between 1 and 50nm of the phase change materials Ge2Sb2Te5 (GST), N-doped GST (N-GST), Ge15Sb85 (GeSb), Sb2Te, and Ag and In doped Sb2Te (AIST) were deposited by magnetron sputtering, and capped in situ by a 10nm thick Al2O3 film to prevent oxidation. The crystallization behavior of the films was studied using time-resolved X-ray diffraction. For each material we observed a constant crystallization temperature Tx that was comparable to bulk values for films thicker than 10 nm, and an increased Tx when the film thickness was reduced below 10 nm. The thinnest films that showed XRD peaks were 2 nm for GST and N-GST, 1.5 nm for Sb2Te and AgIn-Sb2Te, and 1.3 nm for GeSb. The observed increase in the phase transition temperature with reduced film thickness and the fact that very thin films still show clear phase change properties are indications that Phase Change Random Access Memory technology can be scaled down to several future technology nodes.

Copyright

References

Hide All
1. Zhou, G.-F., Mater. Sci. Engin. A304-306, 73 (2001).
2. Martens, H. C. F. Vlutters, R. and Prangsma, J. C. J. Appl. Phys. 95, 3977 (2004).
3. Chen, Y. C. Rettner, C. T. Raoux, S. Burr, G. W. Chen, S. H. Shelby, R. M. Salinga, M. Risk, W. P. Happ, T. D. McClelland, G. Breitwisch, M. Schrott, A. Philipp, J. B. Lee, M. H. Cheek, R. Nirschl, T. Lamorey, M. Chen, C. F. Joseph, E. Zaidi, S. Yee, B. Lung, H. L. Bergmann, R. and Lam, C. IEDM Technical Digest, p.777780 (2006).
4. Zacharias, M. and Streitenberger, P. Phys. Rev. B 62, 8391 (2000).
5. Williams, G. V. M. Bittar, A. and Trodahl, H. J. J. Appl. Phys. 67, 1874 (199).
6. Homma, H. Schuller, I. K. Sevenhans, W. and Bruynseraede, Y. Appl. Phys. Lett. 50, 594 (1987).
7. Wei, X. Shi, L. Chong, T. C. Zhao, R. and Lee, H. K. Jpn. J. Phys. 46, 2211 (2007).
8. Quintero, A. Libera, M. Cabral, C. Jr., Lavoie, C. and Harper, J. M. E. J. Appl. Phys. 98, 4879 (2001)
9. Raoux, S. Rettner, C. T. Jordan-Sweet, J. L., Kellock, A. J. Topuria, T. Rice, P. M. and Miller, D. C. J. Appl. Phys. 102, 094305 (2007).
10. Friedrich, I. Weidenhof, V. Njoroge, W. Franz, P. and Wuttig, M, J. Appl. Phys. 87, 4130 (2000).
11. Sun, X. Yu, B. and Meyyappan, M. Appl. Phys. Lett. 90, 183116 (2007).
12. Lee, S.-H. Jung, Y. and Agarwal, R. Nature Nanotech. 2, 626 (2007)
13. Choi, H. S. Seol, K. S. Takeuchi, K. Fujita, J. and Ohki, Y. Jap. J. Appl. Phys. 44, 7720 (2005).
14. Raoux, S. Rettner, C. T. Jordan-Sweet, J., Deline, V. R. Philipp, J. B. and Lung, H. L. Proc. Europ. Conf. on Phase Change and Ovonic Science, Grenoble, France, 2006.

Keywords

Thickness-dependent Crystallization Behavior of Phase Change Materials

  • Simone Raoux (a1), Jean L. Jordan-Sweet (a2) and Andrew J. Kellock (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed