Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-19T17:41:02.770Z Has data issue: false hasContentIssue false

Thickness Dependent Effects of Thermal Annealing and Solvent Vapor Treatment of Poly (3-hexylthiophene) and Fullerene Bulk Heterojunction Photovoltaics

Published online by Cambridge University Press:  01 February 2011

Zhouying Zhao
Affiliation:
College of Nanoscale Science and Engineering, University at Albany, State University of New York, 255 Fuller Road, Albany, NY 12203, U.S.A.
Lynn Rice
Affiliation:
College of Nanoscale Science and Engineering, University at Albany, State University of New York, 255 Fuller Road, Albany, NY 12203, U.S.A.
Harry Efstathiadis
Affiliation:
College of Nanoscale Science and Engineering, University at Albany, State University of New York, 255 Fuller Road, Albany, NY 12203, U.S.A.
Pradeep Haldar
Affiliation:
College of Nanoscale Science and Engineering, University at Albany, State University of New York, 255 Fuller Road, Albany, NY 12203, U.S.A.
Get access

Abstract

We have utilized room-temperature solvent vapor treatment followed by thermal annealing to process bulk heterojunction (BHJ) photovoltaic devices based on blends of poly (3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM) of varied active layer thickness. The morphological and photovoltaic performance characteristics of the cells subject to these treatments were found to be dependent on active layer thickness. The devices were characterized using atomic force microscopy (AFM) and opto-electrical and external quantum efficiency measurements in order to analyze the mechanism underlying the observed trend. Performance indicators including fill factor, short-circuit current and power conversion efficiency were correlated to the ordering of device active layers and morphology. The maximum power conversion efficiency achieved was 4.1 %.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Saricifti, N.S., Smilowitz, L., Heeger, A.J., Wudl, F. Science 258, 5987, 1474 (1992).Google Scholar
2. Brabec, C. J., Cravino, A., Meissner, D., Sariciftci, N.S., Rispens, M.T., Sanchez, L., Hummelen, J.C.. Thin Solid Films 403–403, 368 (2002).Google Scholar
3. Brabec, C.J. Solar Energy Materials and Solar Cells 83, 273 (2004).Google Scholar
4. Kim, K., Liu, J., Namboothiry, M., Carroll, D.. Applied Phys.Letters 90, 163511 (2007).Google Scholar
5. Li, G., Yang, Y. J. Appl. Phys. 98, 043704 (2005).Google Scholar
6. Erb, T., Zhokhavets, U., Hope, H., Gobsch, G., Al-Ibrahim, M., Ambacher, O.. Ab Thin Solid Films 511512, 483 (2006).Google Scholar
7. Kim, Y., Cook, S., Choulis, S.A., Nelson, J., Durrant, J.R. and Bradley, D.D.C.. Synthetic Metals 152, 105 (2005).Google Scholar
8. Kim, H., So, W., Moon, S., Korean, J. Physical Society, 48, 441 (2006).Google Scholar
9. Aernouts, T., Vanlacke, P., Haeldermans, I., Haen, J. D., Haremans, P., Poortmans, J., J. Mance. Mater. Res. Soc. Symp. Proc. Vol. 1013 (2007).Google Scholar
10. Reyes-Reyes, M., Kim, K., Carroll, D.. Appl. Phys. Lett. 87, 083506 (2005).Google Scholar
11. Yazawa, K., Inoue, Y., Yamamoto, T., Askawa, N., Phys. Rev. B 74, 094204 (2006).Google Scholar
12. Reyes, M.R., Kim, K., Dewald, J., Sandoval, R.L., Avadhanula, A., Curran, S., and Carroll, D. L.. Org. Lett. 7, 5749 (2005).Google Scholar
13. Vanlaeke, P., Swinnen, A., Haeldermans, I., Vanhoyland, G., Aernouts, T., Cheyns, D., Deibel, C., Haen, J. D., Heremans, P., Poortmans, J. and Manca, J.V. Solar Energy Materials & Solar Cells 90, 2150 (2006).Google Scholar
14. Kim, K., Liu, J., Namboothiry, M., Carroll, D.. Appl. Phys. Lett. 90, 163511 (2007).Google Scholar
15. Kim, Y., Cook, S., Choulis, S.A., Nelson, J., Durrant, J.R., Bradley, D.D.C.. Appl. Phys. Lett. 86, 063502 (2005).Google Scholar
16. Vanlaeke, P., Vanhoyland, G., Aernouts, T., Cheyns, D., Deibel, C., Manca, J., Heremans, P., Poortmans, J.. Thin Solid Films 511512, 358 (2006).Google Scholar
17. Huang, J., Li, G., Yang, Y.. Appl. Phys. Lett. 87, 1121 05 (2005).Google Scholar
18. Ma, W., Yang, C., Gong, X., Lee, K., Heeger, A. J.. Adv. Func Mater, 13, 85 (2003).Google Scholar
19. Miller*, S., Fanchini, G., Lin, Y., Li, C., Chen, C., Su, W. and Chhowalla, M.. J Mater Chem, 18, 306 (2008).Google Scholar
20. Li, G., Yao, Y., Yang, H., Shrotriya, V., Yang, G., Yang, Y. Adv.Funct. Mater., 17, 1636 (2007).Google Scholar
21. Zhao, Yun, Xie, Zhiyuan, Qu, a_Yao, Geng, Yanhou, and Wang, Lixiang. Appl. Phys.Lett. 90, 043504 (2007).Google Scholar