Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T23:28:08.913Z Has data issue: false hasContentIssue false

Thermomechanical properties and fatigue of nanocrystalline Ni/Cu electrodeposits

Published online by Cambridge University Press:  15 March 2011

Olivier Arnould
Affiliation:
LMT-Cachan, ENS Cachan/CNRS UMR 8535/Université Paris VI 61, avenue du Président Wilson, 94235 Cachan Cedex, France
Olivier Hubert
Affiliation:
LMT-Cachan, ENS Cachan/CNRS UMR 8535/Université Paris VI 61, avenue du Président Wilson, 94235 Cachan Cedex, France
François Hild
Affiliation:
LMT-Cachan, ENS Cachan/CNRS UMR 8535/Université Paris VI 61, avenue du Président Wilson, 94235 Cachan Cedex, France
Get access

Abstract

This study deals with the long-term reliability of a high precision pressure sensor using bellows mainly made of electroplated Ni. Thermomechanical properties of this deposit are obtained by several experiments and compared to theoretical models, computations and other authors' results. Bellows are expected to stay in service for many decades, thus their high cycle fatigue behavior has to be known. Stress-life fatigue curve for crack initiation and fatigue crack growth in the electroplated Ni are measured and identified using numerical computations. Results are compared with other results obtained on similar Ni electrodeposits. Normalized stress-life fatigue curve shows no specific nanosize effects.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Arnould, O. and Hild, F., Defect and Diffusion Forum 203–205, 6180 (2002).Google Scholar
2. Banovic, S.W., Barmak, K. and Marder, A.R., J. Mater. Sci. 33, 639645 (1998).Google Scholar
3. Lin, C.S., Hsu, P.C., Chang, L. and Chen, C.H., J. Appl. Electrochem. 31, 925933 (2001).Google Scholar
4. Jumel, J., Taillade, F. and Lepoutre, F., Eur. Phys. J. – Appl. Phys. 23, 217225 (2003).Google Scholar
5. Gleiter, H., Prog. Mat. Sci. 33, 223315 (1989).Google Scholar
6. Turi, T. and Erb, U., Mat. Sci. Eng. A204, 3438 (1995).Google Scholar
7. Wang, N., Wang, Z., Aust, K.T. and Erb, U., Mater. Sci. Eng. A237, 150158 (1997).Google Scholar
8. Fougere, G.E., Riester, L., Ferber, M., Weertman, J.R. and Siegel, R.W., Mater. Sci. Eng. A204, 16 (1995).Google Scholar
9. Buchheit, T.E., Van, D.A. La, Michael, J.R., Christenson, T.R. and Leith, S.D., Metall. Mater. Trans. 33A, 539554 (2002).Google Scholar
10. Hall, E.O., Proc. Phys. Soc. B64, 747753, (1951) and Petch, N.J., J. Iron Steel Inst. 174, 25-28 (1953).Google Scholar
11. Website: neons.mems.cmu.edu/rollett/rollett.htmlGoogle Scholar
12. Arnould, O., PhD thesis, University of Paris VI (2003). Website: tel.ccsd.cnrs.frGoogle Scholar
13. Weibull, W., Roy. Swed. Inst. Eng. Res. 151 (1939).Google Scholar
14. Hild, F., Billardon, R. and Béranger, A.S., Mech. Mat. 22, 1121 (1996).Google Scholar
15. Suresh, S., Fatigue of Materials, Cambridge University Press (1991).Google Scholar
16. Boyce, B.L., Michael, J.R. and Kotula, P.G., Acta Mater. 52(6), 16091619 (2004).Google Scholar
17. Luong, M.P., Mech. Mat. 28, 155163 (1998).Google Scholar
18. Murakami, Y., Stress intensity factors handbook, vol. 2, Pergamon Press, Oxford (1981).Google Scholar
19. Varshneya, A.K., Fundamental of inorganic glasses, Academic Press, Boston (1994).Google Scholar