Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-24T03:29:00.562Z Has data issue: false hasContentIssue false

Thermoelectric Properties of Half-Heusler Compounds N-type MNiSn and P-type MPtSn (M = Hf, Zr)

Published online by Cambridge University Press:  26 February 2011

Yoshisato Kimura
Affiliation:
kimurays@materia.titech.ac.jp, Tokyo Institute of Technology, Materials Science and Engineering, 4259-G3-23 Nagatsuta, Midori-ku, Yokohama, N/A, Japan, +81-45-924-5157, +81-45-924-5157
Tomoya Kuji
Affiliation:
kuji@materia.titech.ac.jp, Tokyo Institute of Technology, Graduate student, Materials Science and Engineering, 4259-G3-23 Nagatsuta, Midori-ku, Yokohama, 226-8502, Japan
Akihisa Zama
Affiliation:
zama@materia.titech.ac.jp, Tokyo Institute of Technology, Graduate student, Materials Science and Engineering, 4259-G3-23 Nagatsuta, Midori-ku, Yokohama, 226-8502, Japan
Taiki Lee
Affiliation:
leetaiki@materia.titech.ac.jp, Tokyo Institute of Technology, Graduate student, Materials Science and Engineering, 4259-G3-23 Nagatsuta, Midori-ku, Yokohama, 226-8502, Japan
Yoshinao Mishima
Affiliation:
mishima@materia.titech.ac.jp, Tokyo Institute of Technology, Materials Science and Engineering, 4259-G3-23 Nagatsuta, Midori-ku, Yokohama, 226-8502, Japan
Get access

Abstract

To design and to develop Half-Heusler based high-temperature thermoelectric materials, thermoelectric properties of n-type MNiSn and p-type MPtSn (M = Hf, Zr) were investigated based on two respective strategies. For the n-type (Hf, Zr)NiSn, a combined process of optical floating zone melting and hot-pressing was applied aiming to reduce thermal conduction through the lattice contribution. For the p-type HfPtSn, power factor and hence figure of merit ZT were dramatically improved by the p-type doping of Ir and Co targeting for Pt-site, which effectively lower electrical resistivity. The additions of Ir and Co are expected not only to increase carrier concentration but also to suppress the lattice thermal conduction by substituting for Pt.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Aliev, F. G., Brandt, N. B., Moshchalkov, V. V., Kozyrkov, V. V., Skolozdra, R. V. and Belogorokhov, A. I., Z. Phys. B: Condens. Matter 75, 167 (1989).10.1007/BF01307996Google Scholar
2. Tritt, T. M., Bhattacharya, S., Xia, Y., Ponnambalam, V., Poon, S. J. and Thadhani, N., Appl. Phys. Lett. 81, 43 (2002).Google Scholar
3. Katayama, T., Kim, S.-W., Kimura, Y. and Mishima, Y.: J. Electronic Mater., 32, 1160 (2003).10.1007/s11664-003-0006-5Google Scholar
4. Hayashi, Y., Kim, S.-W., Kimura, Y. and Mishima, Y.: Proc. of TMS Proc. on Advanced Materials for Energy Conversion II, TMS, Warrendale, 367 (2004).Google Scholar
5. Kim, S.-W., Kimura, Y. and Mishima, Y., ibid., 377 (2004).Google Scholar
6. Kimura, Y., Kuji, T., Zama, A., Shibata, Y. and Mishima, Y., MRS Proc., 886, 331 (2006).Google Scholar
7. Kimura, Y. and Zama, A., Appl. Phys. Lett. 89, 172110 (2006).10.1063/1.2364721Google Scholar
8. Uher, C., Yang, J, Hu, S., Morelli, D. T. and Meisner, G. P., Phys. Rev. B, 59, 8615 (1999).10.1103/PhysRevB.59.8615Google Scholar
9. Katsuyama, S., Matsushima, H. and Ito, M., J.Alloys and Compounds, 385, 232 (2004).10.1016/j.jallcom.2004.02.061Google Scholar
10. Kurosaki, K., Maekawa, T., Muta, H. and Yamanaka, S., ibid., 397, 296 (2005).Google Scholar
11. Fistul', V. I., Heavily doped semiconductors, Plenum Press, New York, 77, (1969).10.1007/978-1-4684-8821-0_4Google Scholar
12. Abeles, B., Phys. Rev. B, 29, 1906, (1963).10.1103/PhysRev.131.1906Google Scholar