Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-18T03:02:40.049Z Has data issue: false hasContentIssue false

Thermoelectric properties of Ba-Ge based Type-III Clathrate Compounds

Published online by Cambridge University Press:  26 February 2011

Jung-Hwan Kim
Affiliation:
JHKim@materials.mbox.media.kyoto-u.ac.jp, Kyoto University, Materials Science and Engineering, Sakyo-ku, Kyoto, 606-8501, Japan
Norihiko L. Okamoto
Affiliation:
nlokamoto@ucdavis.edu, Kyoto University, Department of Materials Science and Engineering, Sakyo-ku, Kyoto, 606-8501, Japan
Kyosuke Kishida
Affiliation:
k.kishida@materials.mbox.media.kyoto-u.ac.jp, Kyoto University, Department of Materials Science and Engineering, Sakyo-ku, Kyoto, 606-8501, Japan
Katsushi Tanaka
Affiliation:
k.tanaka@materials.mbox.media.kyoto-u.ac.jp, Kyoto University, Department of Materials Science and Engineering, Sakyo-ku, Kyoto, 606-8501, Japan
Haruyuki Inui
Affiliation:
haruyuki.inui@materials.mbox.media.kyoto-u.ac.jp, Kyoto University, Department of Materials Science and Engineering, Sakyo-ku, Kyoto, 606-8501, Japan
Get access

Abstract

The crystal structures and thermoelectric properties of Ba-Ge based type-III clathrate compounds in Ba-Al-Ge and Ba-In-Ge systems have been investigated as a function of Al and In content. The absolute values of electrical resistivity and Seebeck coefficient increase, while that of lattice thermal conductivity decreases with increasing Al and In content. The increase in electrical resistivity and Seebeck coefficient is discussed in terms of the number of the excess electrons deduced from the Zintl concept, on the other hand, the decrease in lattice thermal conductivity is discussed in terms of an anisotropic deformation of the open-dodecahedron cage encapsulating Ba atom. High ZT values of 0.74 and 0.87 are obtained at 780 and 580 °C for Ba24Al12Ge88 and Ba24In16Ge84, respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Slack, G. A., “CRC Handbook of Thermoelectrics”, ed. Rowe, D. M. (CRC Press, Boca Raton, Florida, 1995) pp. 407.Google Scholar
2. Nolas, G. S., Cohn, J. L., Slack, G. A. and Schujman, S. B., Appl. Phys. Lett. 73, 178 (1998).Google Scholar
3. Fukuoka, H., Iwai, K., Yamanaka, S., Abe, H., Yoza, K. and Häming, L., J. Solid State Chem. 151, 117 (2000).Google Scholar
4. Kim, S.-J., Hu, S., Uher, C., Hogan, T., Huang, B., Corbett, J.D. and Kanatzidis, M.G., J. Solid State Chem. 153, 321 (2000).Google Scholar
5. Okamoto, N.L., Kim, J.-H., Tanaka, K. and Inui, H., Acta. Mater. 54, 5519 (2006)Google Scholar
6. Paschen, S., Tran, V.H., Baenitz, M., Carrillo-Cabrera, W., Grin, Yu. and Steglich, E., Phys. Rev. B. 65, 134435 (2002).Google Scholar
7. Kim, J.-H., Okamoto, N.L., Kishida, K., Tanaka, K, Inui, H, Acta Mater. 54, 2057 (2006)Google Scholar
8. Izumi, F. and Ikeda, T., Mater. Sci. Forum, 321, 198 (2000).Google Scholar
9. Schafer, H., Annu. Rev. Mater. Sci. 15, 1 (1985)Google Scholar