Skip to main content Accessibility help
×
Home

Thermoelectric Nanowire Junction Photoresponse

  • Tito E. Huber (a1), Scott D. Johnson (a2), Tina Brower (a1), Quinton Barclift (a2), Benjamin Panga (a2) and Gary Harris (a1)...

Abstract

Recently there have been reports of hot carrier thermoelectric response in nanostructured materials like graphene and MoS. We report observing that thermoelectric nanowire junctions detect light. In these experiments we employed devices composed of bismuth nanowire arrays which are capped with a transparent indium tin oxide electrode. The incident surface features very low optical reflectivity and enhanced light trapping. The unique attributes of the thermoelectric arrays are the combination of strong temporal and optical wavelength dependences of the photocurrent. Under infrared illumination, the signal can be completely described by “quasi-equilibrium” thermoelectric effects considering cooling rates given by heat diffusion through the array. The thermal diffusivity is found to be less (by a factor of 3.5) than in the bulk, a result that we discuss in terms of phonon confinement effects. In addition to a thermoelectric response, under visible illumination, we observe a photovoltaic response.

Copyright

References

Hide All
1. Xu, X., Gabor, N. M., Alden, J. S., Van der Zande, A. M., and McEuen, P. L., P.L. “Photo-Thermoelectric Effect at a Graphene, Interface JunctionNanoLetters 10 (2010), p. 562
2. Gabor, N. M., Song, J. C. W., Ma, Q., Nair, N. L., Taychatanapat, Watanabe T. K., Taniguchi, T., Levitov, L.S., and Jarillo-Herrero, P.,. “Hot Carrier-Assisted Intrinsic Photoresponse in GrapheneScience 334, 648 (2011).
3. Nolas, G.S., Sharp, J., and Goldsmid, H.J., Thermoelectrics: Basic Principles and new Materials Developments (Springer Verlag, Heildelberg, 2001).
4. Huber, C.A., Huber, T.E., Sadoqi, M., Lubin, J.A., Manalis, S., and Prater, C.B..”Nanowire Array CompositesScience 263, 800 (1994).10.1126/science.263.5148.800
5. Huber, C.A. and Huber, T.E.,”A Novel Microstructure: Semiconductor-Impregnated Porous Vycor Glass"Journal of Applied Physics 64, 6588 (1988).
6. Parker, W. J., Jenkins, R. J., Butler, C.P., and Abbott, G. L.. "Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity" J. Appl. Phys. 32, 1679 (1961).10.1063/1.1728417
7. Kelzenberg, M. D., Boettcher, S. W., Petykiewitcz, J. A., Turner-Evans, D. B., Putnam, M. C., Warren, E. L., Spurgeon, J. M., Briggs, R. M., Lewis, N. S. and Atwater, H. A., Nature Materials 9, 239 (2010).
8. Borca-Tasciuc, D.-A., Chen, G., Lin, Y.-M., Rabin, O., Dresselhaus, M. S., Borshchevsky, A., J. –Fleurial, P. and Ryan, M. A., "Thermal Characterization of Nanowire Array in a-A1203 Matrix." Mat. Res. Soc. Proc. Vol. 703, V2.7 (2002).
9. Huber, T. E., Scott, R., Johnson, S., Brower, T., Belk, J. H., and Hunt, J. H.. “Photoresponse in arrays of thermoelectric nanowire junctionsApplied Physics Letters 103, 041114 (2013).

Keywords

Thermoelectric Nanowire Junction Photoresponse

  • Tito E. Huber (a1), Scott D. Johnson (a2), Tina Brower (a1), Quinton Barclift (a2), Benjamin Panga (a2) and Gary Harris (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed