Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-18T09:03:39.276Z Has data issue: false hasContentIssue false

Thermodynamics and Growth of GaN Single Crystals Under Pressure

Published online by Cambridge University Press:  10 February 2011

S. Porowski
Affiliation:
High Pressure Research Center Polish Academy of Sciences, Sokolowska 29/37, 01–142 Warsaw, Poland, sylvek@unipress.waw.pl
I. Grzegory
Affiliation:
High Pressure Research Center Polish Academy of Sciences, Sokolowska 29/37, 01–142 Warsaw, Poland, sylvek@unipress.waw.pl
S. Krukowski
Affiliation:
High Pressure Research Center Polish Academy of Sciences, Sokolowska 29/37, 01–142 Warsaw, Poland, sylvek@unipress.waw.pl
Get access

Abstract

GaN is recently considered as the most important material for blue and ultraviolet optoelectronics. The device structures are usually grown on foreign substrates which results in high density of dislocations above 108cm−2. The application of high N2 pressure gives a unique possibility of growing of GaN single crystalline substrates which allows to lower dislocation density in epitaxial layers by 3–4 orders of magnitude.

In this paper, the results of high nitrogen pressure study of properties of Al-N, Ga-N and In-N systems are presented. The results include the phase diagrams in large range of pressures and temperatures (up to 2 GPa and 2000K) and also growth of GaN single crystals from atomic nitrogen solution in liquid gallium. The kinetic limitations of dissolution of N2 in liquid Al, Ga and In will be discussed. It follows, that the best conditions for crystal growth at available pressures and temperatures can be achieved for GaN.

The high nitrogen pressure experimental system equipped with multi-zone internal furnace was used for growth of high quality GaN crystals. At present both n-type and semi-insulating substrate quality GaN crystals with surface area up to 1cm2, with dislocation density below 105 cm-2 are routinely obtained and successfully used for homoepitaxy.

Some results concerning homoepitaxial growth by the MOCVD and MBE methods are shortly reviewed. In particular, it is shown that perfectly matched (strain free) GaN layers can be deposited on the highly resistive GaN:Mg substrates.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Amano, H, Kito, M, Hiramatsu, K and Akasaki, I Jpn. J. Appl. Phys. 28, 2112 (1989).Google Scholar
[2] Nakamura, S., Mukai, T., Senoh, M. and Iwasa, N., Jpn. J. Appl. Phys. 31, 139 (1992).Google Scholar
[3] Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H. and Sugimoto, Y., Jap. J. Appl. Phys. 35, L74 (1996)Google Scholar
[4] Nakamura, S., to appear in Proc. 2nd Int. Conf. On Nitride Semicond. ICNS'97 Tokushima 1997 Google Scholar
[5] Van Vechten, J.A., Phys. Rev. B7, 1479 (1973)Google Scholar
[6] Grzegory, I., Krukowski, S., Jun, J., Boćkowski, M., Wróblewski, M. and Porowski, S. AIP Conference Proceedings 309, 565 (1994)Google Scholar
[7] Class, W, Contract Rep., NASA-Cr-1171 (1968)Google Scholar
[8] Karpinski, J., Jun, J. and Porowski, S., J. Cryst. Growth, 66, 1 (1984)Google Scholar
[9] Karpinski, J., and Porowski, S. J. Cryst. Growth, 66, 11 (1984)Google Scholar
[10] Glushko, W. P. et al., in Termodinamitcheskije svojstwa individualnych veshtchestv, (Nauka, Moscow, 1979) in RussianGoogle Scholar
[11] Grzegory, I., Jun, J., Bockowski, M., Krukowski, St., Wroblewski, M., Lucznik, B. and Porowski, S., J. Phys. Chem. Solids 56, 639 (1995)Google Scholar
[12] Harrison, W. A., Electronic Structure and Properties of Solids Freeman, San Francisco, 1980.Google Scholar
[13] Slack, G.A. and MacNelly, T.F., J. Cryst. Growth, 34, 276 (1976).Google Scholar
[14] Grzegory, I., in Proc, of Joint XV AIRAPT and XXXV EHPRG Conference, edited by Trzeciakowski, W., (World Scientific, Singapore 1996) p. 1421.Google Scholar
[15] Delley, B. J. Chem. Phys., 92, 508 (1990)Google Scholar
[16] Hohenberg, P., Kohn, W., Phys. Rev. 136, 864 ( 1964)Google Scholar
[17] Kohn, W., Sham, L. J., Phys. Rev. 140, 1133 (1965)Google Scholar
[18] Boćkowski, M., Grzegory, I., Wróblewski, M., Witek, A., Jun, J., Krukowski, S., Porowski, S., Ayral-Marin, R. M. and Tedenac, J. C., AIP Conference Proceedings 309, 1255 (1994)Google Scholar
[19] Porowski, S., Grzegory, I., J. Crystal Growth, 178, 174 (1997)Google Scholar
[20] Porowski, S., Bockowski, M., Lucznik, B., Wroblewski, M., Krukowski, S., Grzegory, I., Leszczynski, M., Nowak, G., Pakula, K. and Baranowski, J. M., edited by Ponce, F. A., Moutsakas, T. D., Akasaki, I., Monemar, B. A., (Mater. Res. Soc. Proc. 449, Pittsburgh, PA 1996) p. 3540.Google Scholar
[21] Porowski, S., Bockowski, M., Lucznik, B., Grzegory, I., Wróblewski, M., Teisseyre, H., Leszczynski, M., Litwin-Staszewska, E., Suski, T., Trautman, P., Pakula, K. and Baranowski, J.M., accepted for Acta Physica Polonica, 1997 Google Scholar
[22] Barcz, A., Suski, T., unpublishedGoogle Scholar
[23] Boguslawski, P., Briggs, E. and Bernholz, J., Phys. Rev. B51, 17255, (1995)Google Scholar
[24] Kim, W., Botchkarev, A. E., Salvador, A., Popovici, G., Tang, H., Morkoc, H., J. Appl. Phys. 82, 1 (1997)Google Scholar
[25] Neugebauer, J. and Van de Walle, C. G., Phys. Rev. B50, 8067, (1994)Google Scholar
[26] Saarinen, K., Laine, T., Kuisma, S., Nissila, J., Hautojarvi, P., Dobrzynski, L., Baranowski, J. M., Pakula, K., Stepniewski, R., Wojdak, M., Wysmolek, A., Suski, T., Leszczynski, M., Grzegory, I. and Porowski, S., Phys. Rev. Letters, 79, 3030 (1997)Google Scholar
[27] Leszczynski, M., Grzegory, I., Teisseyre, H., Suski, T., Bockowski, M., Jun, J., Baranowski, J. M., Porowski, S., Domagala, J., J. Crystal Growth, 169, 235 (1996)Google Scholar
[28] Porowski, S., Mater. Sci. Eng. B44, 407 (1997)Google Scholar
[29] Pakula, K., Wysmolek, A., Korona, K. P., Baranowski, J.M., Stepniewski, R., Grzegory, I., Bockowski, M., Jun, J., Krukowski, S., Wróblewski, M., and Porowski, S., Solid State Comm. 97, 919, (1996)Google Scholar
[30] Baranowski, J. M., Liliental-Weber, Z., Korona, K., Pakula, K., Stepniewski, R., Wysmolek, A., Grzegory, I., Nowak, G., Porowski, S., Monemar, B., edited by Ponce, F. A., Moutsakas, T. D., Akasaki, I., Monemar, B. A., (Mater. Res. Soc. Proc. 449, Pittsburgh, PA 1996) p. 393404.Google Scholar
[31] Teisseyre, H., Nowak, G., Leszczylski, M., Grzegory, I., Bockowski, M., Krukowski, S., Porowski, S., Mayer, M., Pelzmann, A., Kamp, M., Ebeling, K. J. and Karczewski, G., MRS Int. J. Nitride Semicond. Res. 1, 13 (1996)Google Scholar
[32] Ivanov, I., Henry, A., Monemar, B. and Baranowski, J. M., unpublished resultGoogle Scholar
[34] Stepniewski, R., Korona, K. P., Wysmolek, A., Baranowski, J. M., Pakula, K., Potemski, M., Martinez, G., Grzegory, I. and Porowski, S., to appear in Phys. Rev. BGoogle Scholar
[35] Cohen, P., to be publishedGoogle Scholar
[36] Pelzmann, A., Kirchner, C., Mayer, M., Schauler, M., Kamp, M., Ebeling, K. J., to appear in Proc. 2nd Int. Conf. On Nitride Semicond. ICNS'97 Tokushima 1997 Google Scholar