Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-24T05:36:23.518Z Has data issue: false hasContentIssue false

Thermodynamic Predictions of Phase Stability and Crystallization Temperature of Silicon-Based Amorphous Alloys

Published online by Cambridge University Press:  01 January 1993

J.R.A. Carlsson
Affiliation:
Thin Film Division, Department of Physics and Measurement Technology, Linköping University, S-58183 Linköping, Sweden
X.H. Li
Affiliation:
Thin Film Division, Department of Physics and Measurement Technology, Linköping University, S-58183 Linköping, Sweden
S.F. Gong
Affiliation:
Thin Film Division, Department of Physics and Measurement Technology, Linköping University, S-58183 Linköping, Sweden
H.T.G. Hentzell
Affiliation:
Thin Film Division, Department of Physics and Measurement Technology, Linköping University, S-58183 Linköping, Sweden
Get access

Abstract

A thermodynamic calculation of Si-X alloys has been carried out, where X is any element from group III or V. Free-energy diagrams for those systems have been established. A comparison between thermodynamic predictions and experimental results is carried out for the Si-B and the Si-Sb alloys. It is found that the agreement between theory and experimental results for the free- energy diagrams and for the crystallization temperature predictions are good. The model and the different features for the various elements are described in detail.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Carlsson, J. R. A., Gong, S. F., Li, X.-H., and Hentzell, H. T. G., J. Appl. Phys. 70 (9), 4857 1991.Google Scholar
2. Li, X.-H., Carlsson, J. R. A., Gong, S. F., and Hentzell, H. T. G., Appl. Phys. Lett., 72 (2), 514 1992.Google Scholar
3. Psaras, P. R., Eizenberg, M., and Tu, K. N., J. Appl. Phys. 56, 3439 1984.Google Scholar
4. Beyers, R., and Sinclair, R., J. Appl. Phys. 57, 5240 1985.Google Scholar
5. Muraka, S. P., J. Vac. Sci. Technol. 17, 775 (1980).Google Scholar
6. Li, B.-Z., Zhang, A.-M., and G. B. Jiang, , J. Appl. Phys. 66, 5416 (1989).Google Scholar
7. Gong, S. F. and Hentzell, H. T. G., J. Appl. Phys. 68 (9), 4542 (1990).Google Scholar
8. Gong, S. F., Robertsson, A., Hentzell, H. T. G., and Li, X.-H., J. Appl. Phys. 68 (9), 4535 (1990).Google Scholar
9. Weast, R. C., CRC Handbook of Chemistry and Physics, 69'th edition (CRC, Boca Raton, FL, 1989), p. D4346 Google Scholar
10. Miedema, A. R., Boom, R., and De Boer, F. R., J. Less Common Met, 41, 283 (1973).Google Scholar
11. Miedema, A. R., J. Less-Common Met. 46, 67 (1976).Google Scholar
12. Massalski, T. B., Binary Alloy Phase Diagrams (American Society for Metals, Ohio, 1963)Google Scholar
13. Carlsson, J. R. A., Li, X.-H., Gong, S. F., and Hentzell, H. T. G., unpublished.Google Scholar
14. Li, X.-H., Carlsson, J. R. A., Gong, S. F., and Hentzell, H. T. G., unpublished.Google Scholar