Hostname: page-component-788cddb947-rnj55 Total loading time: 0 Render date: 2024-10-19T05:43:51.131Z Has data issue: false hasContentIssue false

Thermodynamic Model of the Role of Hydrogen Dilution in Plasma Deposition of Microcrystalline Silicon

Published online by Cambridge University Press:  17 March 2011

J Robertson*
Affiliation:
Engineering Dept, Cambridge University, Cambridge CB2 1PZ, UKjr@eng.cam.ac.uk
Get access

Abstract

Hydrogen dilution is used to promote the nucleation and growth of microcrystalline Si (μc-Si) by plasma enhanced chemical vapour deposition (PECVD). The free energy of μc-Si and hydrogenated amorphous silicon (a-Si:H) is analysed as a function of Si:H composition in order to derive the effect of hydrogen dilution. It is shown that increasing the hydrogen content of the a-SiHx precursor phase increases the relative stability of μc-Si slightly, but strongly increases the driving force for nucleation. The higher stability of μc-Si is the fundamental origin of the higher etch rates of a-Si:H, while surface mobility models do not account for sub-surface nucleation of μc-Si.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Veprek, S, Iqbal, Z, Ostwald, H R, Webb, A P, J Phys C 14 295 (1981)Google Scholar
2. Tsai, C C, Anderson, G B, Thompson, R, Wacker, B, J Non-Cryst Solids 114 151 (1989)Google Scholar
3. Tsai, C C, ‘Amorphous silicon and related materials’, ed Fritzsche, H, World Scientific, Singapore, 1988) p123.Google Scholar
4. Solomon, I, Drevillon, B, Shirai, H, Layadi, N, J Non-Cryst Solids 164 989 (1993)10.1016/0022-3093(93)91164-XGoogle Scholar
5. Matsuda, A, Tanaka, K, J Non-Cryst Solids 97 1367 (1987)Google Scholar
6. Matsuda, A, J Non-Cryst Solids 59 767 (1983)Google Scholar
7. Saitoh, K, Kondo, M, Fukawa, M, Nishimiya, T, Futako, W, Shimizu, I, Matsuda, A, Mat Res Soc Symp Proc 507 843 (1999)Google Scholar
8. Kondo, M, Fukawa, M, Guo, L, Matsuda, A, J Non-Cryst Solids 266 84 (2000)Google Scholar
9. Nakata, M, Sakai, A, Uematsu, T, Namikawa, T, Shirai, H, Hanna, J, Shimizu, I, Phil Mag B 63 87 (1991)Google Scholar
10. Shirai, H, Das, D, Hanna, J, Shimizu, I, App Phys Lett 59 1096 (1991)Google Scholar
11. Nakamura, K, Yoshino, K, Takeoka, S, Shimizu, I, Jpn J App Phys 34 442 (1995)Google Scholar
12. Godet, C, Layadi, N, Cabarrocas, P R I, App Phys Lett 66 3146 (1995)Google Scholar
13. Cabarrocas, P R I, Hamma, S, Hadjadj, A, Bertomeu, J, Andreu, J, App Phys Lett 69 529 (1996)Google Scholar
14. Otobe, M, Oda, S, J Non-Cryst Solids 164 993 (1993)Google Scholar
15. Zhou, J H, Ikita, K, Yasuda, T, Yamasaki, S, Tanaka, K, J Non-Cryst Solids 227 857 (1998)Google Scholar
16. Street, R A, Phys Rev B 43 2454 (1991)Google Scholar
17. Porter, D A, Easterling, K E, ‘Phase Transformations in Metal and Alloys’, (Chapman and Hall, London, 1992)p263 ff, p18610.1007/978-1-4899-3051-4_5Google Scholar
18. Yarbrough, W A, Mat Res Soc Symp Proc 162 75 (1989); T R Anthony, Mat Res Soc Symp Proc 162 61 (1989); W Banholzer, Surface Coatings Technol 53 1 (1992); C C Hayman, J C Angus, Science 241 913 (1988)Google Scholar
19. Robertson, J, J App Phys 87 2608 (2000)Google Scholar
20. Roorda, S, Sinke, W C, Poate, J M, Jacobson, D C, Dieker, S, Denis, B S, Eaglesham, D J, Spaepen, F, Fuoss, P, Phys Rev B 44 3702 (1991); P A Stolk et al, J App Phys 75 7266 (1994); E P Donovan, F Spaepen, J M Poate, D C Jacobson, App Phys Lett 55 1516 (1989); E P Donovan, et al, J App Phys 57 1795 (1985)Google Scholar
21. Stutzmann, M, Phil Mag B 56 63 (1988)Google Scholar