Skip to main content Accessibility help

Thermodynamic and Kinetic Study of Phase Transformations in Solder/Metal Systems

  • R.R. Chromik (a1) and E.J. Cotts (a1)


Diffusion in both the Pd‐Sn and Cu‐Sn systems has been investigated using differential scanning calorimetry. Averaged interdiffusion coefficients for the PdSn4, PdSn2 and Cu3Sn intermetallics have been calculated, where equilibrium concentrations in the diffusion couples are assumed. There is an obvious hierarchy within the Pd‐Sn system where diffusion is fastest in the most Sn‐rich intermetallic. Comparisons within each system, including consideration of the solute diffusion coefficients in pure Sn, provide evidence that in the most Sn rich phase (e.g. PdSn4) the interstitial diffusion of metal atoms is the dominant reaction mechanism. In contrast, the diffusion coefficient for the Cu‐rich phase Cu3Sn was found to be five orders of magnitude smaller than the solute diffusion coefficient for Cu in pure Sn.



Hide All
1 Kadija, I.V., Abys, J.A., Maisano, J.J., Kudrak, E.J. and Shimada, S., Plating and Surf. Finishing, 56 (Feb. 1995).
2 Kay, P.J. and Mackay, C.A., Trans. Inst. Metal Finishing 54, 68 (1976).
3 Bader, W.G., Welding Res. Supp. 48, 551s (1969).
4 Whitfield, J and Cubbin, A. J., A.T.E. Journal 24, 2 (1965).
5 Decker, D.L., Candland, C.T. and Vanfleet, H.B., Phys. Rev. B 11, 4885 (1975).
6 Anthony, T.R. in Vacancies and Interstitials. edited by Seeger, A., Schumacher, D., Schilling, W. and Diehl, J. (North Holland Publishing:Amsterdam, 1970), pp. 935958.
7 Dyson, B.F., J. Appl. Phys. 37, 2375 (1966).
8 Tu, K.N. and Rosenberg, R., Jap. J. Appi. Phys. Suppl. 2, Pt. 1, 633 (1974).
9 Cotts, E.J. in Thermal Analysis in Metallurgy, edited by Shull, R.D. and Joshi, A. (Minerals, Metals and Mining Society, Warrendale, PA, 1992), pp. 299328.
10 Gösele, U. and Tu, K.N., J. Appi. Phys. 53, 3252 (1982).
11 Chromik, R.R. and Cotts, E.J. in Thermodynamics and Kinetics of Phase Transformations, edited by Im, J.S., Park, B., Greer, AL., Stephenson, G.B. (Mater. Res. Soc. Proc. 398, Pittsburgh, PA 1996), pp. 307312.
12 Bryant, AW., Bugden, W.G., and Pratt, J.N., Acta Metall. 18, 101 (1970).
13 Guadagno, JR. and Pool, M.J., J. Phys. Chem. 72, 2535 (1968).
14 Hood, G.M., J. Phys. F 8, 1677 (1978).
15 Dyson, B.F., Anthony, T.R. and Turnbull, D., J. Appi. Phys. 38, 3408 (1967).
16 Dreyer, K.F., Neils, W.K., Chromik, R.R., Grosman, D. and Cotts, E.J., App. Phys. Lett. 67, 2795 (1995).
17 Bader, S., Gust, W. and Hieber, H., Acta Metall. Mater. 43, 329 (1995).
18 Onsihi, M. and Fujibuchi, H., Trans. JIM 16, 539 (1975).
19 Kim, H. K., Liou, H.K. and Tu, K.N., J. Mater. Res. 10, 497 (1995).
20 Gravas, D., Frear, D., Quan, L. and Morris, J. W., Jr., J. Electr. Mater. 15, 355 (1986).

Thermodynamic and Kinetic Study of Phase Transformations in Solder/Metal Systems

  • R.R. Chromik (a1) and E.J. Cotts (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed