Skip to main content Accessibility help
×
Home

Thermally Annealed GaN Nucleation Layers And The MOCVD Growth Of Si-Doped GaN Films On (00.1) Sapphire

  • D. K. Wickenden (a1), J. A. Miragliotta (a1), W. A. Bryden (a1) and T. J. Kistenmacher (a1)

Abstract

The effect of epitaxial growth temperature in the range 985 – 1050°C on the preparation of device quality Si-doped GaN layers on self-nucleated (00.1) sapphire has been explored. Not unexpectedly, several device-related properties monotonically improve with increasing growth temperature, including: (a) carrier density; and, (b) volume fraction of heteroepitaxial domains. However, a number of equally important device-related properties show a local maximum or minimum and include: (a) optical second-harmonic generation intensity; (b) structural coherence; and, particularly (c) surface morphology. The antecedents of the first class is found in an increase in surface and bulk diffusion and a reduction in film defect incorporation and stress at the GaN/GaN (nucleation layer)/α-Al2O3 heterointerface (even for overlays with thicknesses near 1 μm). The second class apparently stems from the limited range over which the thermally annealed GaN nucleation layer stimulates pseudo two-dimensional growth of the overlayer.

Copyright

References

Hide All
1. Yoshida, S., Misawa, S. and Gonda, S., Appl. Phys. Lett. 42, 427 (1983).
2. Amano, H., Sawaki, N., Akasaki, I. and Toyoda, Y., Appl. Phys. Lett. 48, 353 (1986).
3. Detchprohm, T., Hiramatsu, K., Amano, H. and Akasaki, I., Appl. Phys. Lett. 61, 2688 (1992).
4. Nakamura, S., Jap. J. Appl. Phys. 30, L1705 (1991).
5. Wickenden, D. K., Kistenmacher, T. J., Bryden, W. A., Morgan, J. A. and Estes Wickenden, A., Mat. Res. Soc. Symp. Proc. 221, 167 (1991).
6. Molnar, R. J., Lei, T., and Moustakas, T. D., Appl. Phys. Lett. 62, 72 (1993).
7. Estes Wickenden, A., Wickenden, D. K., and Kistenmacher, T. J., J. Appl. Phys., in press.
8. van der Heijden, A.E.D.M. and van der Eerden, J.P., J. Crystal Growth 118, 14 (1992).
9. Maruska, H. P. and Tietjen, J. J., Appl. Phys. Lett. 15, 327 (1969).
10. Hiramatsu, K., Detchprohm, T. and Akasaki, I., Jap. J. Appl. Phys. 32, 1528 (1993).
11. Wickenden, D. K., Miragliotta, J. A., Bryden, W. A., and Kistenmacher, T. J., J. Appl. Phys., in press.
12. Andrews, S. J., Hails, J. E., Harding, M. M., and Cruickshank, D. W. J., Acta Crystallogr. A 43. 70 (1987);
Arndt, W. W. and Willis, B. T. M., Single Crystal Diffractometry (Cambridge University Press, Cambridge, 1966), Ch. 8.
13. Akasaki, I., Amano, H., Koide, Y., Hiramatsu, K. and Sawaki, N., J. Crystal Growth 98, 209 (1989).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed