Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-23T07:22:57.847Z Has data issue: false hasContentIssue false

Thermal Stabilttx of Hxdrogbnation Processes into Multicrystalline Silicon

Published online by Cambridge University Press:  03 September 2012

Jean-Claude Muller
Affiliation:
Centre de Recherches Nucléaires (IN2P3), Laboratoire PHASE (UPR du CNRS n°292), HP 20, F-67037 Strasbourg Cedex 2, France
Bouchalb Hartiti
Affiliation:
Centre de Recherches Nucléaires (IN2P3), Laboratoire PHASE (UPR du CNRS n°292), HP 20, F-67037 Strasbourg Cedex 2, France
Hussain Younis
Affiliation:
Centre de Recherches Nucléaires (IN2P3), Laboratoire PHASE (UPR du CNRS n°292), HP 20, F-67037 Strasbourg Cedex 2, France
Paul Siffert
Affiliation:
Centre de Recherches Nucléaires (IN2P3), Laboratoire PHASE (UPR du CNRS n°292), HP 20, F-67037 Strasbourg Cedex 2, France
Get access

Abstract

We have compared, for multicrystalline silicon solar cells, the neutralization efficiency of low energy hydrogen ion implantation to those resulting from the deposition of hydrogenated silicon nitride and determined the optimal temperature in order to have the most important improvement of the bulk diffusion length LD.

In particular, the concentration profile of the introduced hydrogen has been determined by means of Elastic Recoil Detection (ERD) or nuclear reaction analysis and the electrical effects of the hydrogen investigated by the Surface PhotoVoltage (SPV) technique.

At least, the stability of the LD improvement after post-thermal treatments around 400°C and at higher temperatures has been studied for two annealing modes using a classical (15 min) or a rapid lamps furnace (25 sec).

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Corbett, J. W., Lindstrcm, J. L., Pearton, S. J. and Tavendale, A. J., Solar Cells 24, 127 (1989).Google Scholar
2. Capizzi, M. and Mittiga, A., Physica 146 B, 19 (1987).Google Scholar
3. Muller, J. C., Vu-Thuong-Quat, , siffert, P., Amzil, H., Barhdadi, A. and M'Gafad, N., Solar Cells 25, 109 (1988).CrossRefGoogle Scholar
4. Lewalski, N., Schindler, R. and Voss, B., Proc. 19th IEEE Photovoltaic Spec. Conf., New Orleans (USA) (1987) p. 1059.Google Scholar
5. Yagi, H., Matsukuma, K., Kokunai, S., Kida, Y., Kawakami, N., Nunoi, T. and Inoguchi, T., Proc. 20th IEEE Photovoltaic Spec. Conf., Las Vegas (USA) (1988) p. 1584.Google Scholar
6. Martinuzzi, S., El Ghuitani, H., Ammor, L., Pasquinelli, M. and Poitevin, M., Proc. 19th IEEE Photovoltaic Spec. Conf., New Orleans (USA) (1987) p. 1069.Google Scholar
7. Soler, M. A.G., Pereyra, I., Fonseca, F. J. and Andrade, A. M., Proc. 21th IEEE Photovoltaic Spec. Conf., Kissimmee (USA) (1990) p. 650.Google Scholar
8. Watanabe, H., Technical Digest of the 4th International PVSEC Conf., Sydney (Australia) (1989).Google Scholar
9. Michiels, P. P., Verhoef, L. A., Stroom, J. C., Sinke, W. C., Van Zolingen, R. J. C., Denisse, C. M. M., Hendriks, M., Proc. 21th IEEE Photovoltaic Spec. Conf., Kissinmee (USA) (1990) p. 638.Google Scholar
10. Coppye, J., Szlufcik, J., Elgamel, H. E., Ghannam, M., De Schepper, P., Nijs, J. and Mertens, R., Proc. 22nd IEEE Photovoltaic Spec. Conf., Las Vegas (USA) (1991) p. 873.Google Scholar
11. Muller, J. C., Ababou, Y., Barhdadi, A., Courcelle, E., Unamuno, S., Salles, D., Siffert, P. and Fally, J., Solar Cells 17, 201 (1986).Google Scholar
12. Pearton, S. J., Corbett, J. W. and Shi, T. S., Appl. Phys. A43, 153 (1987).Google Scholar
13. Eichhammer, W., Hage-Ali, M., Stuck, R. and Siffert, P., Appl. Phys. A50, 405 (1990).CrossRefGoogle Scholar
14. Rang, J. S. and Schröder, D. K., J. Appl. Phys 65, 2974 (1989).Google Scholar