Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-18T23:41:39.929Z Has data issue: false hasContentIssue false

Thermal Stability of Strained Si on Relaxed Si1−xGex Buffer Layers

Published online by Cambridge University Press:  15 March 2011

P.M. Mooney
Affiliation:
IBM Research Division, T.J. Watson Research Center P.O. Box 218, Yorktown Heights, NY 10598
S.J. Koester
Affiliation:
IBM Research Division, T.J. Watson Research Center P.O. Box 218, Yorktown Heights, NY 10598
J.A. Ott
Affiliation:
IBM Research Division, T.J. Watson Research Center P.O. Box 218, Yorktown Heights, NY 10598
J.L. Jordan-Sweet
Affiliation:
IBM Research Division, T.J. Watson Research Center P.O. Box 218, Yorktown Heights, NY 10598
J.O. Chu
Affiliation:
IBM Research Division, T.J. Watson Research Center P.O. Box 218, Yorktown Heights, NY 10598
K.K. Chan
Affiliation:
IBM Research Division, T.J. Watson Research Center P.O. Box 218, Yorktown Heights, NY 10598
Get access

Abstract

The thermal stability of strained Si on relaxed Si1−xGex structures annealed at 1000 °C was investigated using high-resolution x-ray diffraction, Raman spectroscopy and transmission electron microscopy. Interdiffusion at the Si/Si1−xGex interface is negligible for annealing times <30 sec and is independent of the initial Si layer thickness and the composition of the Si1−xGex layer. In all cases the Si layers remained nearly fully strained, but a significant density of misfit dislocations was seen in layers that exceeded the critical thickness for dislocation glide. The Si layer thickness could be measured for layers as thin as 7 nm.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Welser, J., Hoyt, J.L., Takagi, S. and Gibbons, J.F., Tech Dig. Int. Electron Devices Meet., 947 (1994).Google Scholar
2. Rim, K., Hoyt, J.L. and Gibbons, J.F., Tech. Dig. Int. Electron Devices Meet., 707, (1998).Google Scholar
3. Rim, K., Welser, J., Hoyt, J. L. and Gibbons, J.F., Tech. Dig. Int. Electron Devices Meet., 517 (1995).Google Scholar
4. Rim, K., Koester, S.J., Hargrove, M., Chu, J.O., Mooney, P.M., Ott, J., Kanarsky, T., Ronsheim, P., Ieong, M., Grill, A. and Wong, H.-S. P., Tech Dig. Symp. on VLSI Technology, 59 (2001).Google Scholar
5. Matthews, J.W. and Blakeslee, A.E., J. Cryst. Growth 32, 265 (1976).Google Scholar
6. Baucaud, P., Wu, L., Guedji, C., Julien, H.F., Sahnes, I., Campidelli, Y. and Garchery, L., J. Appl. Phys. 80, 1414 (1996).Google Scholar
7. Griglione, M., Anderson, T.J., Haddara, Y.M., Law, M.E., Jones, K.S. and Bogaard, A. van den, J. Appl. Phys. 88, 1366 (2000).Google Scholar
8. Samavedam, S.B., Taylor, W.J., Grant, J.M., Smith, J.A., Tobin, P.J., Dip, A., Phillips, A.M. and Liu, R., J. Vac. Sci. and Technol. B 17, 1424 (1999).Google Scholar
9. Sugii, N., Proceedings of New Group IV (Si-Ge-C) Semiconductors Workshop, Sendai, Japan, 2001.Google Scholar
10. Koester, S.J., Rim, K., Chu, J.O., Mooney, P.M., and Chu, J.A., Appl. Phys. Lett. 79, 2148 (2001).Google Scholar
11. Mooney, P.M., Jordan-Sweet, J.L., Stephenson, G.B., Legoues, F.K., and Chu, J.O., Adv. X-Ray. Anal. 38, 181 (1995).Google Scholar
12. Rocking Curve Analysis by Dynamical Simulation, Bede Scientific, Inc.Google Scholar