Hostname: page-component-7c8c6479df-995ml Total loading time: 0 Render date: 2024-03-28T19:14:28.341Z Has data issue: false hasContentIssue false

Thermal Stability of Pt Nanoparticles Supported on WOx/Al2O3 for n-Heptane Hydroconversion

Published online by Cambridge University Press:  01 February 2011

J. L. Contreras*
Affiliation:
Universidad Autónoma Metropolitana-Azco.CBI-Energía Av.San Pablo 180.C.P.02200, México D. F., Mexico.
G.A. Fuentes
Affiliation:
Universidad Autónoma Metropolitana-Iztapalapa CBI, IPH, Apartado Postal 55534, México, D.F.
J. Salmones
Affiliation:
Instituto Politécnico Nacional, Lab. de Catálisis y Materiales ESIQIE. C.P. 07738, México D. F.
B. Zeifert
Affiliation:
Instituto Politécnico Nacional, UPALM-ESIQIE. C.P. 07738, México D. F. Corresponding autor: jlcl@correo.azc.uam.mx
*
*Corresponding autor: jlcl@correo.azc.uam.mx
Get access

Abstract

The thermal stabilization of γ-Al2O3 using W+6 ions has been found useful to the synthesis of Pt/Al2O3 catalysts. The sequential impregnation method was used to study the effect of W6+ upon Pt/ γ-Al2O3 reducibility, Pt dispersion, Raman spectroscopy and n-heptane hydroconversion. The W/Pt atomic ratios varied from 3.28 to 75. We found that the W6+ ions delayed reduction of a fraction of Pt+4 atoms beyond 773 K. At the same time, W6+inhibited sintering of the metallic crystallites once they were formed on the surface. For the sample with a W/Pt atomic ratio of 3.28, W6+ did not inhibit the H2 reduction of Pt oxides even below of 773 K, the Pt oxides were reduced completely, however, the Pt dispersion decreased for this sample with respect to the Pt/γ-Al2O3 catalyst. After reduction at 1073 K, sequential samples impregnating Pt on WOx/γAl2O3 were more active and stable during n-heptane hydroconversion than monometallic Pt/γAl2O3 catalyst. Selectivities for dehydrocyclization, isomerization and Hydrocracking changed significantly when the W/Pt atomic ratio and reduction temperature increased. Initial and final reaction rates were more sensitive to reduction temperature. W6+ ions promoted high thermal stability of Pt crystallites when sequential catalysts were reduced at 1073 K and deactivation of bimetallic catalysts reduced at 773 K and 1073 K was less than the deactivation of Pt/Al2O3 catalyst.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Novaro, O., Li, C. L., Wang, J. A., “Deactivation by Coking”, Chapter 10, in Catalytic Naphta Reforming, 2nd Edition, Antos, G.J. Aitani, A. M., Marcel Dekker Inc. (2004) p.166.Google Scholar
[2] Rezgui, Y., Guemini, M., Appl. Catal. A: General, 335 (2010) 103111.Google Scholar
[3] Guemini, M., Rezgui, M. Y., Appl. Catal. A: General 345 (2010) 164175.Google Scholar
[4] Bigey, C., Hilaire, L., Maire, G., J. Catal. 184 (1999) 406.Google Scholar
[5] Contreras, J. L., Fuentes, G.A., Salmones, J., Zeifert, B., J. of Alloys and Compounds 483 (2009) 371373 Google Scholar
[6] Contreras, J. L., Fuentes, G. A., L. A. García, Salmones, J., Zeifert, B., J.of Alloys and Compounds 483 (2009) 450452.Google Scholar
[7] Rangel, M. C., Carvalho, L. S., Reyes, P.. Parera, J. M., Catal. Letters, Vol. 64, No. 2-4, (2000) 171178 Google Scholar
[8] Contreras, J. L. and Fuentes, G. A., Studies in Surface Science and Catalysis, Edited by Delmon, B. and Yates, J.T., Elsevier, , 101 (1996) 11951204 Google Scholar
[9] Contreras, J.L., Fuentes, G.A., Información Tecnológica, Vol.10, No.1 (1999) 353360 Google Scholar
[10] Contreras, J.L., Del Toro, C.G., Shifter, I. and Fuentes, G. A., Stud. Surf. Sci and Catal. Vol. 38 (1988) 5159.Google Scholar
[11] Pieck, C.L., Vera, C.R. and Parera, J.M., Proceedings of the 9th International Symposium on Catalyst Deactivation, Lexington K.Y. USA, Stud. Surf. Sci. and Cataly. 139 (2001) 279286.Google Scholar
[12] Siri, G.J., Casella, M.L., Ferreti, O.A., and Fierro, J.L.G., Proceedings of the 9th Internacional Symposium on Catalyst Deactivation, Lexington K.Y. USA, Studies in Surf. Sci. and Catal. 139 (2001)287294.Google Scholar
[13] Padró, C.L., Miguel, S.R. de, Castro, A.A. and Scelza, O.A., Catalyst Deactivation 1997, Stud. Surf. Sci. and Catal. Vol.111 (1997) 191198.Google Scholar
[14] McCallister, T.P. and O'Neal, K.R., German Offenlegungsschrift 2 (104), (1971) 429 Google Scholar
[15] Carter, R.L. and Sinfelt, J.H., J.Catal. 62 (1980) 127.Google Scholar
[16] Satterfield, C. N., “Heterogeneous Catalysis in Industrial Practice”, 2nd Ed. Mc. Graw Hill New York (1991).Google Scholar
[17] Huges, T. R., Jacobsen, R. C., Gibson, K. R., Schornack, L. G. and McCabe, J. R., Oil & Gas J., 121(1976) 5.Google Scholar
[18] Kluksdahl, H. E., Patent, U.S.. 3415737 (1968).Google Scholar
[19] Jacobson, R. L., Kluksdahl, H. E., Coy, G. S. Mc and Davis, R. W., Proc. Div. Ref. Amer. Petr. Inst. 49 (1969) 504.Google Scholar
[20] Little, D. M., Catalytic Reforming, Pennwell Publishing Co. Oklahoma (1985).Google Scholar
[21] Gates, B. C., Katzer, J. R., Schuit, A. G. C., Chemistry of Catalytic Proceses, McGraw-Hill, New York (1979).Google Scholar
[22] Bertolacini, R. J., Pellet, R. J., in Catalyst Deactivation, Eds. Delmon, B., Froment, G. F., Stud. Surf. Sci. Catal. Vo.6, (1980) 7377.Google Scholar
[ 23] Salvati, L., Jr., Makovsky, L. E., Stencel, J. M., Brown, F. R. and Hercules, D. M., J. Phys. Chem. 65 (1981) 37003707.Google Scholar
[24]. Tittarelli, P., Iannibello, A. and Villa, P. L. J. Solid State Chem. 37(1981) 95.Google Scholar
[25]. Thomas, R., V. H. J. Beer and Moulijn, J. A., Bull. Soc. Chim. Belg, Vol. 90, No.12 (1981) 22.Google Scholar
[26]. Soled, S. L., Vicker, G. B. Mc, Murrell, L. L., Sherman, L. G., Dispenziere, J. C. Jr, Hsu, S. L. and Waldman, D., J. Catal. 111 (1988) 286295.Google Scholar
[27]. Murrell, L. L., Grenoble, D. C., Kim, C. J. and Dispenziere, N. C., J. Catal. 107 (1987) 463.Google Scholar
[28]. Ioffe, M. S., Kuznetzov, B. N., Ryndin, Y. A. and Yermakov, Y. I., Proc. 6th Int. Congr. Catal. London (1977) 131138.Google Scholar
[29]. Kutznesov, B. N., Yermakov, Y. I., Collman, J. P., Boudart, M., J. Mol. Catal. 4 (1978) 49.Google Scholar
[30]. Regalbuto, J. R., Fleish, T. H., Wolf, E. E., J. Catal. 107 (1987) 114.Google Scholar
[31]. Regalbuto, J. R., Allen, C. W., Wolf, E. E., J. Catal. 108 (1987) 304322.Google Scholar
[32]. Regalbuto, J. R., Wolf, E. E., Crucg, A. and Rennet, A. (Editors), Catalysis and Automotive Pollution Control, Elsevier Science Publishers, (1987) 345358.Google Scholar
[33]. Venuto, P. B., Whyte, T. E., Hill, C. N. J., Patent, U.S., 3661769 (1972).Google Scholar
[34]. M'Boungou, J. S., Schmitt, J. L., Maire, G., Garin, F., Catal. Lett. 10 (1991) 391400.Google Scholar
[35]. M'Boungou, J. S., Hilarie, L., Marie, G., Garin, F., Catalysis Letters 10 (1991) 401412.Google Scholar
[36]. Farbotko, J. M., Garin, F., Girard, P., Maire, G., J. Catal. 139 (1993) 256267.Google Scholar
[37]. Robertson, S. D., McNicol, B. D., Baas, J. H. de, Kloet, S. C., Jenkins, J. W., J. Catal. 37 (1975) 424.Google Scholar
[38]. Kortü, G., “Reflectance Spectroscopy, Principles and Methods, Applications", Springer Verlag, New York, 1969.Google Scholar
[39]. Hughes, T. R., White, H. M., J. Phys.Chem. 71 (1967) 2192 Google Scholar
[40]. Nam, S. W., Gavalas, G. R., Appl. Catal. 74 (1991) 5364.Google Scholar
[41] Lieske, H., Lietz, G., Spindler, H., Volter, J., J. Catal. 81 (1983) 816.Google Scholar
[42]. Scelsa, O. A., Miguel, S. R. De, Baronetti, G. T., Castro, A. A., React. Kinet. Catal. Lett. Vol.33, No.1 (1987) 143148.Google Scholar
[43]. Yao, H. C., Sieg, M. and Plummer, J. K., J. Catal. 59 (1979) 365374.Google Scholar
[44]. Alexeev, O., Shelef, M., Gates, B. C., J.Catal. 164 (1996) 115.Google Scholar
[45]. Regalbuto, J. R., Fleish, T. H., Wolf, E. E., J. Catal. 107 (1987) 114.Google Scholar
[46]. Regalbuto, J. R., Allen, C. W., Wolf, E. E., J. Catal. 108 (1987) 304322.Google Scholar
[47]. Parry, E. P., J. Catal. 2 (1963) 371.Google Scholar
[48]. Biloen, P., Pott, G.T., J. Catal. 30 (1973) 169.Google Scholar
[49]. Thomas, R., Kerkhof, E.P.J.M., Moulijn, J.A., Medema, J. and Beer, V.H.J. de, J. Catal. 61 (1980) 559.Google Scholar
[50]. Iannibello, A., Villa, P.L. and Marengo, S., Gazz. Chem. Ital. 109 (1979) 521.Google Scholar
[51]. Bursey, R. H., Keller, O.L. Jr, J. Chem. Phys. 41 (1964) 215 Google Scholar
[52]. Figoli, N. S., Sad, M. R., Beltraminti, J. N., Jablowski, E. J., Parera, J. M., Ind. Eng. Chem. Prod. Res. Dev. 19 (1980) 545551 Google Scholar
[53]. Beltramini, J., Trimm, D. L., Applied Catal. 32 (1987)7183.Google Scholar